LLM Inference Optimization

Autumn 2025
Lecturer: Yuedong (Steven) Xu
Shenzhen Loop Area Institute

yuedongxu@slai.edu.cn

Fudan University
ydxu@fudan.edu.cn

mailto:yuedongxu@slai.edu.cn
mailto:ydxu@fudan.edu.cn

Disclaimer

Machine learning systems is a broad and rapidly evolving field.
The course material has been developed using a broad
spectrum of resources, including research papers, lecture slides,
blogposts, research talks, futorial videos, and other materials
shared by the research community. Sometimes external
animations and exquisite pictures are heavily reused.

Inference Optimization: Outline

* Overview

* Attention Optimization
* Continuous Batching

e KV Cache Optimization
* Speculative Decoding

* Distributed Serving

Overview

* Decoder-only Transformer

Output Token Embeddings
LT CE] BT .
T t I t Decoder :
) Rmmataeeses e N Block

[Transformer Decoder Block]

Feed Forward

! [Transformer Decoder Block] :

[Transformer Decoder Block

Decoder-Only Transformer

Q
I Layer Norm '

Input Token Embeddings
GPT (Generative Pre-trained Transformer) is the first decoder-only Transformer model

Source: The Rise of LLMs: From GPT to Modern Innovations

Overview

* Decoder-only Transformer

* Generating a probabilistic distribution over possible next token, and a

decoding algorithm is employed to select the actual output token

Probability Distribution
Over next token (sub-word)

(E—
» 0.15 England g
»[0.05 | India 8
| @
Hong Kong is a city in » LLM > 0.5 China " >
])
Previous words (Context) » 0.12 g'
(=
— 0.18 Japan g
ey

Tokens being predicted

Next-token prediction, i.e. generating output tokens one by one
Source: The Rise of LLMs: From GPT to Modern Innovations

» China

Overview

* Autoregressive Decoding

* “Prefill” refers to the initial parallel computation phase where the model

processes the entire input prompt for subsequent token-by-token generation

cached
Parallelizable : : ! !
\ prefill decode decode
KV vectors
The quick brown fox —) jumps —) over —>

prompt output

Source: Prefill and Decode for Concurrent Requests - Optimizing LLM Performance

https://huggingface.co/blog/tngtech/llm-performance-prefill-decode-concurrent-requests

Overview

* Prefill: highly parallelizable

e A small batch size can "saturate” GPU computation
 Parallelization over batch size, header size, sequence length and thread-block tiling

KT Causal mask

Softmax(

Source: Jia-Bin Huang from University of Maryland College Park

Overview

* Autoregressive Decoding

* “Decode” refers to the iterative process of generating output tokens one at a

time, where each new token is predicted based on the input prompt and all

previously generated tokens

cached
I R
prefill decode
KV vectors
The quick brown fox — jumps
prompt

Source: Prefill and Decode for Concurrent Requests - Optimizing LLM Performance

dec

ode

L over

output

Hard to be parallelized

S

https://huggingface.co/blog/tngtech/llm-performance-prefill-decode-concurrent-requests

Overview

new key vector

* Decode: much less computes KT

Q

r N\ \ \ N\ \ \ [N\
== S Oftm aX) ~ ~ S ~ ~ S g X
s N\ \ \ [N\ \ \ [\

JI1l K

new output

"

SESEEEs B
¢ = QKT \
new query vector

new value vector
Decode without caching

Ove rVi ew B Newly computed
Could be cached

* Decode: much less computes

* Why caching Key and Value, other than Query

T

_
Y, 0,

Bl - sma(lll GOEEEE0) X

]
5, =0, '

Decode Compute output token one by one

Overview

e An animation

Step 1 -
Q KT QKT Y Attention
Query Token 1 = QK Value Token 1 Token 1
D
So 3 _ _
S X 15 B X -
K4 >
(1, emb_size) (emb_size, 1) (1, 1) (1, emb_size) (1, emb_size)
Q KT QKT Y, Attention
Query Token 1 ~ Ak, Value Token 1 Token 1
D
S @ =
§ S X 9_c| = X =
4] [0)
(&) =]
(1, emb_size) (emb_size, 1) (1.1 (1, emb_size) (1, emb_size)

D Values that will be masked D Values that will be taken from cache

Overview

* Why Caching KV?
* Reducing redundant computations for KEYs and VALUEs

* Increasing memory consumption

2 X 2 X 8096 X 30 X 64 X 64

~ |
K/V Floatlé Sequence length # of layers # of heads dimension 10.6 GB!

Overview

* Autoregressive Decoding

* Token generation core metrics: TTFT and TPOT (time per output token)

User Prompt %ErokensiatioH- Prefill j—{ Decode Hbetokevﬁs«atior}{

First Output

token J

b

Time to First Token (TFTT)

User Prompt %Erokens:at;onj{ Prefill }[

Decode

HDQtOkaSathVJ_a(—F

Source: Prefill and Decode for Concurrent Requests - Optimizing LLM Performance

U~

irst Output
token

Inter-token lo«tency

https://huggingface.co/blog/tngtech/llm-performance-prefill-decode-concurrent-requests

Insufficient to store data at
SRAM: load from HBM to

Ove rview SRAM and write back to HBM

* Hierarchical GPU Memory

* |/O throughput versus memory size

2\ SRAM:19TB/s (20 MB)
SRAM

LU HBM: 1.5 TB/s (40 GB)
HBM

(VETL R T TeTaVA DRAM: 12.8 GB/s
(CPU DRAM) (>1TB)

Memory Hierarchy with

Bandwidth & Memory Size L1 instruction cache: 192KB per SM * 108 SM ~20MB
Data flow: DRAM/L2 Cache to/from L1 Cache, much

A macroscope view of /0 tradeoff (V100) .
slower than computing

Source: https://docs.nvidia.com/deeplearning/performance/dl-performance-gpu-background/index.html

Overview

e Prefill and Decode

* Prefill: Compute intensive with GEMM, Decode: memory I/O intensive with GEMV

A

O Decoding BS=1
125 TFLOP/s

Wasted FLOPS | < g /\ @ Decoding Bs=32

Compute Bound
‘ Decoding BS=128

Prefill Seq=64

Attainable Performance(TFLOP/s)
%

O™ == - ------—-—--

©

\ Prefill Seq=256

/\ Prefill Seq=512

>

—
w

Arithmetic Intensity(FLOP/byte)

Roofline model of NVIDIA V100 GPU

Overview

e Prefill and Decode

* Prefill: Compute intensive, Decode: memory |/O intensive

* Prefill saturates GPU compute
even at batch size of 1

* Decode under-utilizes GPU
compute and costs as much

as 200 times prefill for bs=1

Source: SARATHI: Efficient LLM Inference by Piggybacking Decodes with Chunked Prefills

Prefill Decode
0.251 284 preproj
40- Bl attn

0.201 EXT postproj
~ "330_ E=S ffn Inl
50.1 5 é B ffn In2
Q Q 0 others
.E 0.10- .E 20
= b=

0.05- 101

0.00- 0-

1 2 4 8 12 18 1 2 4 8 12 18

Batch size

Batch size

Per-token prefill and decode time with different batch sizes
(sequence length = 1024) for LLaMa-13B on A6000 GPU

Overview

* \Very Large-scale LLM Inference

& deepseeck

Full model size with 256 experts

Long context and high
request loads

Overview

* Versatile communication medium

* Transmission delay emerges

PCle 5.0 NVMe Adapter For M.2 Gen5 SSD
PCle Gen4 & Gen3 Backwards Cmplbl

S

NVIDIA.

: NVLink RoCE
PCle Link : e.g. GPU - GPU e.g. Machine — Machine
e.g. CPU — GPU with . 5 _
in total 1.8TB/s bandwdith up to 800 Gbps

up to 128GB/s bandwidth

Overview

* Challenges of LLM Inference
* New token generation paradigm
* Prefill and Decode

* Hierarchical memory

* Fast I/O small size versus slow I/0 large size

* Heterogeneous bandwidth

* High intra-machine bandwidth versus low inter-machine bandwidth

* To emphasize

* many optimization methods, e.g. attention optimization can be employed for
model training (e.g. sparse attention, linear attention, flash attention)

Source: Jia-Bin Huang from University of Maryland College Park

Inference Optimization: Outline

e Overview

* Attention Optimization
e Sparse Attention
* Linear Attention
* Flash Attention
e Continuous Batching

e Continuous Batching
e KV Cache Optimization
e Speculative Decoding

* Distributed Serving

Attention Optimization

Key matrix: K € RVNxd

~

/. Parameters

| 1,1 O12 A3 A14 A15] | q1
Arq Aoo Az Aoas A
21 22 A3 U4 Aps d> [k1T k; k;'; k;}r k;]
31 A3, A33 A34 U35 — 43
0 axd Qg1 Ay A3 Agyg Oas q4
w €R | Q51 A5 A53 A5y Ass | | IS
WK ERdXd . | . \ . QERNXd
Attention score matrix: RNX Query matrix:
WV E RdXd
g1 ki v q2 ko vy q3 k3 v3 qs kg vy Qs ks Us
S SN SN SUNY SN SUNY SUNY SN SN SUN SUNY SN S S |
Wl Wk \wVv| we| wk| wVv| we| wk|iwv| we| wWkX|w"| wWe|wk wVv
Embedded Tok
d d d d oken
Tokene X1€R X, €R? X3eR? X eRY XseR

Source: Jia-Bin Huang from University of Maryland College Park

Attention Optimization

* Real-world operations

* Transferring both matrices from global memory to shared memory for
computing, and write the result back to global memory progressively

* Complexity f (partially) overlapped
e Computation: O(N?4d)

2N2%d
C

* Considering multiplications a itions = computing time T, =

e Communication: O(N?)

2x(N?+2Nd)

* Considering bidirectional I/O read/write - communication time Ti0 =

e Global storage: O(N?)
\ GPT3 with 10K tokens in FP16:
200MB per head per layer

B

Attention Optimization

* Real-world operations

* Transferring both matrices from global memory to shared memory for

Computation, /O and storage should all be optimized!

- i i - e C
e Communication: O(N?)

2x(N?+2Nd)
B

* Considering bidirectional I/O read/write - communication time Ti0 =

e Global storage: O(N?)

Sparse Attention

* Sparse attention
* reduce computational and memory cost by only computing attention for a
subset of token pairs instead of all pairs

» evidence from machine learning community (e.g. Rewon Child, 2019)

* Sparse attention patterns

* Position-based sparse attention: rule-based or heuristic methods to decide

the positions where the interactions of these pair-wise tokens are important

* Content-based sparse attention: tokens selectively attending only to other

tokens that are relevant based on their representations

Position-based Sparse Attention

 Global attention

* global nodes act as an information hub, allowing them to attend to every

other node in the sequence

.........
. - -

........
.........

Query

A bipartite graph illustration of QKT computation

q1
qz
qs
44
ds
de
47
ds

Key
ki ky ks ky ks kg ko kg

Not stored in memory

Position-based Sparse Attention

e Band attention

» often termed “local attention” or “sliding window attention”, in which a

node’s attentions are confined to neighboring nodes in a local window

Key
ke ky ks ki ke ke ko kg
1 * Reducing complexity from O(N?)
q, to O(kN)
q3 * Limited receptive field (cannot
qa capture long-range dependencies)
Query
s * Sacrificing context modeling
e ability: slow information
q7 propagation
ds

Position-based Sparse Attention

e Dilated attention

* using a dilated window with gaps of dilation equal to or greater than 1

Key
ki ky ks ky ke kg ko kg

q1
q2 e Reducing complexity from
g O(N?) to O(kN)
Query 44 * Missing fine-grained, short-
ds range dependencies (failure to
de capture important neighbors in
q, those gaps)
ds

Position-based Sparse Attention

e Random attention

e each query randomly samples a few keys for better capturing non-local
interactions

Position-based Sparse Attention

* Block attention

* input sequence segmented into multiple non-intersection query blocks and

each block assigned a local memory block Key
ki ky ks ky ks ke k7 kg

q1
q>
qs
q4
Query
ds
de
q7

ds

Position-based Sparse Attention

* COMPOUND attention

(a) Star-Transformer (b) Longformer (c) ETC (d) BigBird

* BigBird : local + global + random yields dense-equivalent performance
* Increased implementation complexity, more hyperparameters to tune and potential redundancy

https://wikidocs.net/198820

Position-based Sparse Attention

* Representative sparse attentions in a nutshell

Full Global Window Dilated Random
Attention Attention Attention Attention Attention

Source: Speed Always Wins: A Survey on Efficient Architectures for Large Language Models

[] ||
D‘__
o
T

O O

O N
L/] A
Q O
~O)—

ETC

BigBrid

Content-based Sparse Attention

* Routing transformer

|

Clustering (approximate & fast)

q1 k1 q> kz q; k3 q. k4 qs k5 q6k6 q- k7 q8k8

t + ++t +t ¢+t ¢ttt t tt t 1
Wwe\Wk| wewk|l welwk| wWewX| we|wk| we\wk| welwk| we|wkX
% % N %

xl x2 x3 x4 x5 x6 x7 x8

Source: Jia-Bin Huang from University of Maryland College Park

Content-based Sparse Attention

* Routing transformer

q1 kl LI:E Q3 k3 94k, QSH Q6 kg HH Hka

[K-means Clustering (approximate & fast)

q1 k, 92k, 93 k; 94k, 9s k- Qe k, 97k, 9skg
t ¢+ ¢+ ¢+ ¢+ ¢+ + 1+ +tt+ t+t t t t t 1

We\WX| Wewk|l wWe|Wwk| wWewX| wWelwk| Wwe|wkX| we|wkX| we|wk

% N N %
Source : Jia-Bin Huang from University x]_ xz x3 x4- xS x6 x7 x8

of Maryland College Park

Content-based Sparse Attention

 Clusters ki kJ ki ki kd ke k-

* {q1,q94,q6,k1, k3}
* {q2, k1, k4, k8}

* {93, 95, k6}

* {q7,98,k2,k5,k7}

EEESE & SE

Source: Jia-Bin Huang from University of Maryland College Park

Content-based Sparse Attention

* Routing transformer: summary

 attention scores in scaled dot-product rely on the similarity between Q and K
—> approximated by grouping them in a shared projection space
* needs to be double checked by our students manually
e each query only needs to attend to keys within its assigned cluster (typically
Y1 in size), reducing complexity to O(n+/n) while preserving relevant long-

range dependencies

* cluster centroids are learned during training, allowing the model to adaptively
group based on content

Content-based Sparse Attention

* Reformer: using locality-sensitive hashing (LSH) instead of dot-

product attention

Sequence
of queries=keys

LSH bucketing

[

Sort by LSH bucket

Chunk sorted
sequence to
parallelize

Attend within
same bucket in

ovovecrunc NI =

Source: Reformer: The Efficient Transformer

[[

W

Using locality-sensitive hashing (LSH) to
select key-value pairs for each query

Using Reversible Transformer to reduce
memory usage during training

Similar items (queries and keys) falling in
the same bucket with high probability

Processing sequences of length 64K
tokens or more efficiently

Inference Optimization: Outline

e Overview

* Attention Optimization
* Sparse Attention
* Linear Attention
* Flash Attention

e Continuous Batching
e KV Cache Optimization
* Speculative Decoding

 Distributed Serving

. KT

O(Nd,N)

“optimal parenthesization” via dynamic programming

Source: Jia-Bin Huang from University of Maryland College Park

Source: Jia-Bin Huang from University of Maryland College Park

Original
O(Nz (dv"l'dk))

Source: Jia-Bin Huang from University of Maryland College Park

N

Original
O(Nz (dv"l'dk))

Source: Jia-Bin Huang from University of Maryland College Park

N

Original
O(Nz(dv"l'dk)) N

New

0(Nd,d,)

Source: Jia-Bin Huang from University of Maryland College Park

Q

O(Ndypd,)

Letting N = 2048
dk — dv —_ 64‘

Original

0(N2(d,+dy)) = 536,870,912

§ 156%

New

0(Nd,d,) = 8,388,608

Source: Jia-Bin Huang from University of Maryland College Park

dyc

Q

O(Ndypd,)

Obstacle

e Softmax prevents this reordered GEMM

1
Softmax T

Source: Jia-Bin Huang from University of Maryland College Park

dy

Q

KNT

Linear Attention

* Computing Softmax (Katharopoulos et al., 2020)
N N

o z . B exp(q. - ;)
1 — 1,1 1 — l

e Substituting exp by
exp(q - k) = ¢(q) - ¢(q)
+ there exists e
N $@)- ()

Linear Attention

* Overall Output: complexity order O(N)
0 = ¢ (p(K)V), 0,Q,K,V € RV*¢

* An example: denominator of 0,4

!

_ 1_ 1_

q1 i

q ; [a1 af a4} qs
$(q1) =|gi | pCU) = 13|

g1 K.

Source: Jia-Bin Huang from University of Maryland College Park

N\

S/
D= E=1D= M

~
Il
=

Linear Attention

* |[terative computation to further reduce complexity

N @) e
' i=12N=1¢(CI1)'§b()

* where

St:z LY ERdXd

[p(q)- pUc)]vi = (a)’ (Z i f) = S, =;:_1+ Vg

=1

M=

Il
—

L

— ¢(Qt)TSt

Source: Jia-Bin Huang from University of Maryland College Park

Linear Attention

* Today’s Linear Attention

e Baby linear attention: Linear Transformer, SANA, CHELA, LightningAttention, etc.
* Efficient in computation, 1/O, storage
* Performance loss compared with Softmax

* More advanced linear attention:

e Deltarule
* Gamma forget

e Gated attention

 Qwen3-Next and Kimi-linear, and many others

Inference Optimization: Outline

e Overview

* Attention Computation Optimization
* Sparse Attention
* Linear Attention
* Flash Attention

* Continuous Batching

e KV Cache Optimization
* Speculative Decoding

* Distributed Serving

Flash Attention

* Prior works
* Reducing # of scaled dot-product, potentially sacrificing attention performance

* Compute is fast while reading K and V, and writing S back the results are slow

e Challenges

* |/O cost of loading/storing Q, K and V are non-trival

Algorithm 0 Standard Attention Implementation

Require: Matrices Q,K,V € R¥*4 in HBM.
1: by blocks from HBM, compute S = QKT Iwrite Slto HBM.
2: from HBM, compute P = softmax(S),|write P Jto HBM.
3: [Load P and V|by blocks from HBM, compute O = PV |write O|to HBM.
4: Return O.

Flash Attention

* From Softmax to Safe Softmax

l el \, ozi—maz(c)

softmax(x;) = Z?—l o) = softmax(z;) = S eti—mas(z)
= J=

e Online Safe Softmax: not enough space to store entire x

. for i—1,N do
* Algl: three-pass algorithm

m; < max (m;_1, x;)

- end
m;: max;_, {x;} with initial value my = — for i1 N do
L di —d;_ | + eTiTMmN
d;: z e*J7[™N| is the denominator of Softmax —
J=1 for i— 1, N do
a;: is the final Softmax output eTi—MmN

a; <

(1.\7
end

d'

Flash Attention

* Online Safe Softmax

* d; can be computed iteratively

e:cj—mi
j=1
1—1
(§ e.’Bj mz) + ea:i—mi
J=1
1—1
(E ewj—mi—l)emi—l_mi + efl?i—mz'
J=1

Algorithm 2-pass online softmax

for:—1, N do

end
for i—1,N do

end

m;

d;

— max (m;_1,T;

/ mMmi—-—1—M; ri—M;
«— dl_le 1 1 I+e ' 1

Flash Attention

NOTATIONS
Q[k,:]: the k-th row vector of @ matrix.

° Onllne Safe SOftmaX KT[:.i]: the i-th column vector of K7 matrix.
O[k,:]: the k-th row of output O matrix.
* One-pass safe softmax V[i,:]: the i-th row of V matrix.
]] {o;}: Z;:1 a;V[j,:]. a row vector storing partial aggregation result A[k.:i] x V[:i,:]
algorithm does not exist ‘
Boby
» Safe softmax is only our for i —1.N do
intermediate result: zi — QU] KT 1]

m; <« max(m;_i.x;)

([!’ — d:_l(,mifl—m;_(..1-,—711i

0 = Softmax(QKT)V end

for i— 1. N do

sy — Ty
et N

a; —
' dy;

0;i — 0i_1+a;V][i;]
end

Ok,] —on

Flash Attention

* One-pass Attention

* Define an “intermediate” output

7 a:j—mi

ofi= | > ——V[i;]| =

J=1

fori - 1, N
z; — Q[k,] KT[:, 1]

m; + max(m;_1,x;)

/ / m;_,—m,; T;—m;
d, —d_je +e —

! 1 —TN; . —m.
di—lemkl m; erz:, ™m;

o, =0, ;— 7 + 7 Vi, :]
end
Olk,:] + dy

Flash Attention

 Compute it iteratively

L eTiTmi
> V0|
J=1 t
i—1 _zi—m T;—m,;
eli i) eli i
j=1 i i
=1 xi—m, xTi—m;
e’ i—1 e’ i i—1
— V ,
(; d;_—l eZi—mi-1 d; [J]) +
i—1 Tj—MmM;—1 d,
(& —1 —
VIj i | ——e™ ™ +
(jl d;_) d;
d, 1 eml;l M e$1 m;

Flash Attention

Tiling: loading and computing at the block granularity

 Pseudocode of Flash Attention

Algorithm 1 FLASHATTENTION /

Require: Matrige £ X
1: Set block sizds B, = [f—d] , B, =
2: Initialize O = (0)nxg € R0 12,7 RV, m = (—0)y € RN in HBM.

3: Divide Q into T, = [Bﬂ,] blocks Qi,..., Qg of size B, X d each, and divide K,V in to T, = [g—cl blocks
Ki,...,Kr. and Vy,...,Vr,, of size B, X d each.
4: Divide O into 7, blocks O, ..., Or, of size B, X d each, divide ¢ into 7, blocks ¢;, ..., ¢r, of size B, each,
divide m into T blocks my,...,my, of size B, each.

5: » Outer Loop on Key/Value

6: |JLoad K;,V; from HBM to on-chip SRAM.

7. Jor 1<i<T, do » Inner Loop on Key/Value

8: Toad Q;, Uy, 4;, i from HBM to on-chip SRAM.

9: On chip, compute S;; = Q,-KJT. € RBrxBe,

10: On chip, compute 71;; = rowmax(S;;) € RE-, f’,-j = exp(S;; — m;j) € RB-*Be (pointwise), {7,-]- =
rowsum(P;;) € RP.

11: On chip, compute m}*" = max(m;,m;;) € RB- £V = MM 4 e'hii_m?ew&j € RB-.

12: — diag(€7%)~! (diag(£)e™ ™" 0; + ™7™ P, V) to HBM.

13: Write ¢; k— €%, m; « m?*" to HBM.

14: end for

15: end for

16: Return O.

N S = QKT
di KT P = softmax(S)
O =PV

dk dv

Q: v

Source: Jia-Bin Huang from University of Maryland College Park

N S = QKT
di KT P = softmax(S)
O =PV

dk dv

Q- =

Source: Jia-Bin Huang from University of Maryland College Park

N S = QKT
dy KT P = softmax(S)

Copy Block to ﬁ O =PV
dy

dy

o =N

- Output-to HMB- -

O = softmax(QK ")V

Source: Jia-Bin Huang from University of Maryland College Park

S=0K'
P = softmax(S)
Copy Block to 0
] .

PV
dy

——-—

o =

- OUtput 1o HMB o

O = softmax(QK ")V

Source: Jia-Bin Huang from University of Maryland College Park

N S = QKT
= softmax(S)
PV

P
Copy Block to ﬁ 0
d,

dy

——-—

e =

0 = softmax(QK ")V

Source: Jia-Bin Huang from University of Maryland College Park

N S = QKT
dy KT P = softmax(S)
Copy Block to ﬁ O =PV

dk dv

Q- o vV

L Output-to HMB|---—--- -

O = softmax(QK ")V

Source: Jia-Bin Huang from University of Maryland College Park

N S = QKT
dy KT P = softmax(S)
Copy Block to ﬁ 0 — PV

dk e dv

I+ Compute Block on i
o ,”:
: | ! 7 |
L e
1 1 / 1

N 0 7 e N |/
0 x ;
L o7 |
R / I
L A i
1 |/ 1
D: »

b ' miwi -..............1____'

O = softmax(QK ")V

Source: Jia-Bin Huang from University of Maryland College Park

S=0K'
P = softmax(S)
Copy Block to 0
u "

PV
dy

. Compute Block on

Qo =Y

O = softmax(QK ")V

Source: Jia-Bin Huang from University of Maryland College Park

N S = QKT
di KT P = softmax(S)

Copy Block to ﬁ O =PV
dy

dy

0 Hv

O = softmax(QK ")V

Source: Jia-Bin Huang from University of Maryland College Park

di

Copy Block to ﬁ
dy

QN

O = softmax(QK ")V

S=0Q0KT
= softmax(S)
PV

P
0
d,

vV

Source: Jia-Bin Huang from University of Maryland College Park

N S = QKT
di KT P = softmax(S)
Copy Block to ﬁ 0, PV
dy

dy

i E IE ,—"%’
O 1= o 1V

O = softmax(QK ")V

Source: Jia-Bin Huang from University of Maryland College Park

N S = QKT
di KT P = softmax(S)
Copy Block to ﬁ O =PV

dk dv

QN N V

O = softmax(QK ")V

Source: Jia-Bin Huang from University of Maryland College Park

N S = Q KT
di KT P = softmax(S)
Copy Block to ﬁ Outer Loop i 0 — PV

dk dv

Inner Loop

|
l 1
1
1 .
1 :
| I
1
| A7
/ 1
1 2 I N
1 s :
1 / 1
o :
]
| I
| I
1
1

O = softmax(QK ")V

Source: Jia-Bin Huang from University of Maryland College Park

Flash Attention

* Flash Attention (Tiling)

\ [\ [\ \ [N
T\ [N\ \ [N\ \ \ \ (N ()
) \ J \ J \ J J
1 —_ \ J \ J \ J \ J) — J
— N M e 0(:
T\ [\ \ [\ [\ \ \ (N ()
k) \ J \ J \ J J
— \\ J \ J \ J \ J \ J Nt Nt
—\ \ [N\ \ N
\ [\ \ [N\ \ N\ \ N ()
— \ J \ J \ J \ J
— \\ J \ J \ J \ J \ J Nt n———/ N/
| W N
—\ \ N\ N N
O (N\ [\ [\ [\ \ \ (N ()
—
-) _J)
er — —— L J L) L) L))) _J _J
u D
N \ \ [N\ \ \ \ \ (
—
— U J \ J \ J \ J \ J N—r e NS
D
O (N\ [\ [\ [\ \ (\ (\ (
—
) \ J \ J \ J J
) ah ah ah ah 2 2 a an ’ VaIueBIOCkl
—
...... B Il)OI)0)
) \ J \ J —J))
ry ' | | 1 | (1 | (|
BIOCk - _J) _J_J
...... Bl] {)OI))]
— \ J \ J J))

Flash Attention

 Kernel Fusion

* Multiple separate operations or kernels (small, independent programs that run on
hardware like GPUs) are combined or "fused" into a single, more efficient kernel.

Kernel 1: Scale Kernel 2: ReLU Kernel 3: Add
TO T1 T2 T3 TO T1 T2 & TO T T2 T3
T4 T5 T6 T7 T4 T5 T6 T7 T4 T5 T6 T7
T8 T9 T10 ™ T8 T9 T10 TN T8 T9 T10 ™
T12 T13 T14 T15 T12 T13 T4 T15 T12 T13 T14 T15
Thread Block (16 threads) Thread Block (16 threads) Thread Block (16 threads)

—

Pay the launch overhead once
instead of many times

Source: Kernel Fusion: A Smart Way to Enhance Neural Networks Performance Each thread executes all operations sequentially

Flash Attention

 Kernel Fusion

* Minimizing data movement between slow global memory and faster on-chip

memory (like SRAM or registers), avoids storing intermediate results

8 Threads > 32-byte Scattered Memory Access
8 Thread 32-byt ttered M A Thread Block (32 :
reads -> yte Scattered Memory Access ea ock (S T e e T s
threads)
8 Threads - 32-byte Scattered Memory Access
Single memory transaction for 32 consecutive elements
8 Threads > 32-byte Scattered Memory Access

Multiple smaller memory transactions

Source: Kernel Fusion: A Smart Way to Enhance Neural Networks Performance

Flash Attention

 Kernel Fusion

* FlashAttention kernel fusion combining multiple (block-wise) steps of the
attention computation—such as scaling, masking, softmax normalization, and

matrix multiplications—into custom fused CUDA kernels
Attention on GPT-2

] Matmul
15+ -

Dropout
21041 > 6 - 7 X improvement
o Softmax
& -
= o T Fused

Mask Kernel

1 —
Tweemat [
0 - -

PyTorch FlashAttention

Flash Attention

* Complexity Analysis
 GPT2 Medium (seq. length 1024, head dim. 64, 16 heads, batch size 64) on A100

Attention Standard FLASHATTENTION
GFLOPs 66.6 75.2
HBM R/W (GB) 40.3 4.4
Runtime (ms) 41.7 7.3

* Computational complexity: Flash Attention is slightly higher
* Memory complexity: Flash Attention is significantly better O(Nd)

* |/O complexity
« Standard Attention O(N?d) versus Flash Attention O(N?d?M~1)
» Quterloopruns T, = N/B. = 4d/M where M is SRAM size of a SM, and reads K and V once
* Innerloop reads Q, O, and write O back to HBM
* Total I/O complexity: O(Nd)XT, = O(N*d*M~1)

Flash Attention Effect of Block Size

& -
U6 - 2

- ol

. . Q -6

* Flash Attention in practice A 4 - c
Y Runtime =

* Impact of hyper parameters: <21 A4 ey, |3

. 2 Cesses 2 :P\

Larger block size reduces the number FH : , 3

+ 64 12 256 512 £

of data loading, thus improving Block Size

the forward runtime Forward runtime of FlashAttention

* As hidden dimension becomes large, the block size shrinks
« O(N?d?M™1) is quadratic to the hidden dimension d, while M is constrained by the hardware

Flash Attention

e Flash Attention

* Underutilized streaming multi-processors for small batch size but long sequences

* GPU grid

* Flash Attention enables Parallel computing

ey Yy iy iy on batches and heads

e The grid consists of batch size X

Thread Block Thread Block Thread Block Thread Block

Thread Block Thread Block Thread Block Thread Block

head _number thread blocks

ey Y ey i

that only 16 out of 108 SMs are used on A100

Grid of Thread Blocks

Flash Attention

* Flash Attention v2

* Making FlashAttention sequence parallel

* The shape of a grid: grid(num_m_block, batch_size, num_heads)

e
D
——

e
e

e
e

D

—
—
—

D

\ J

Query head

head2

[Key’ head 1

[Key’ head 2

]
|

T peay anjep
Z peay anjep

|
|

Sequence parallelism
Only slicing Q

RN

[Key’ head 1]

[Key’ h

ead 2

|

J

T peay anje

|

Z peay anjep

|
|

Flash Attention

* Flash Attention v2: Loop Reordering

(K(l))T (K\Z;)T

=)

Output

e — §

S(l):Q(K(lJ)T : s® = q (K®)

1)
y@® oM = = 748))
l
Stored in HBM
@), =a (1)) = exp(S®@ i = (1)
. AV =exp(s)) | AY =exp(S) = ow=L" ow
Computed in SRAM 1)
(not materialized in HBM) v A®

Rescaling to
correct
denominator

M= Zexp(s‘l’)i @ =M 4 Zv.\'[l(s“zi),

FlashAttention forward pass: key K is partitioned into two
blocks and value V is also partitioned into two blocks

Source: Flash Attention v2

m) = rowmax(S™W) € RB"

1) _p(D)
¢ = rowsum(eS ™) € RE”

O’(l) = es(l)_m(l)V(l) € RBer

m® = max(m™V, rowmax(S®)) = m
§(2 _m(2

£2) = gm-m® p(1) 4 rowsum(e

f)(z) — diag(f(Z))—leS(z)—m(Z)
0® = diag(em(l)_m(2))_1()(1) + es(z)_m(z)

0@ = diag(¢®)10®@ = 0.

(1_ (2)_
) = rowsum(e3"’ ") + rowsum(e® ™) = ¢

V(2) — es(l)—mv(l) +es(2)—mv(2)

Flash Attention

* FlashAttention v2

e Algorithm: fewer non-matmul FLOPs

* GPU is highly optimized on matmul (e.g. Tensor Cores)

* NVIDIA A100 GPU: 312 TFLOPs/s of FP16/BF16 matmul, only 19.5 TFLOPs/s of non-matmul FP32

Sij — QZKJT ~new new\
Oi — exp(mi —m,)Oz + H]V}
m;; < rowmax(.S;;) lust
ml" < max(m;, m;;) O,li“t - (lg“St)_lOi
» L new
Pij = exp(8j — mi®) Scaling at next round |:> 1
lij « rowsum(F;) P Only scaling the final result in FlashAttention v2
l?ew — exp(mi — m:”el}’)'lz -+ lz’j
orew o |(1mew) i, g;(p(mi — mrv)0; + PyV;) FIashAttention v2: reduce the number of
rescaling ops, as well as bound-checking
T and causal masking operations

Scaling at this round in FlashAttention v1

Source: Jia-Bin Huang from University of Maryland College Park

Source: Jia-Bin Huang from University of Maryland College Park

dy
dk Copy Block toﬁ dv
Compute Block on
N g § N
Write to
/ / / _
01‘ ‘ 0j =0i—1 —e

Source: Jia-Bin Huang from University of Maryland College Park

di

Wy TTTEEEE=

Cofnpute Block on = =

Write to

Source: Jia-Bin Huang from University of Maryland College Park

di

dk Copy Block to ﬁ

-3 O
R CnGRORTEER SEEE D 3
i Compute|Block o~
e
N | i
Write to
A 4 , ,
03‘ ‘ 0; =0i—1

Source: Jia-Bin Huang from University of Maryland College Park

di

dk Copy Block to ﬁ

s 0o
R L EEEEEEEEDEE Rl A------ .
| Compute Block jon AN
| v
! \
N \
! }
Write to
\ 4 ’ ’
04‘ ‘ Ol — Oi—l

Source: Jia-Bin Huang from University of Maryland College Park

di

dk Copy Block to ﬁ

Compute Block on V]

Write to

Source: Jia-Bin Huang from University of Maryland College Park

di

Write to

Compute Blockon
/ !
‘ 0] =0;_4

Source: Jia-Bin Huang from University of Maryland College Park

di

Write to

dk Copy Block to ﬁ

Source: Jia-Bin Huang from University of Maryland College Park

di

Write to

dk Copy Block to ﬁ

Source: Jia-Bin Huang from University of Maryland College Park

di

dk Copy Block to

Write to

Compute|Block on TS

Source: Jia-Bin Huang from University of Maryland College Park

di

dk Copy Block to

Write to

" Compute Blockfon v
\\i
A

' / !
‘ 0] =0;_4

Source: Jia-Bin Huang from University of Maryland College Park

di

dk Copy Block to

Write to

|
| l
L.
Compute Blockon | ! N
\
'y
D\
Co\
o\

Source: Jia-Bin Huang from University of Maryland College Park

Flash Attention

Algorithm 1 FLASHATTENTION-2 forward pass
Require: Matrices Q, K,V € RV*4 in HBM, block sizes B, B,.

1: Divide Q into T,=[Bﬂr] blocks Qi, ..., Qg of size B, X d each, and divide K,Vintorc=[3ic] vocks Flash Attention v2: Loop Reordering

Ki,...,Kz. and V4,...,Vr_, of size B, X d each.
2: Divide the output O € RN*4 into T, blocks O;, ..., Or, of size B, X d each, and divide the logsumexp L

into T, blocks Ly, . o, L7, of size By each.__ Quterloop: traversing Q submatrices first; * Maintaining the same order of |/O
Toad Q; from HBM to on-chip SRAM: — Innerloop: traversing K and V submatrices

4: . —_
5. _On chip. initialize 0= T0)5, xa € RE4, £ = (0)5, € REr,m®) = (~o0), € RE". com pIeX|ty: 0 (N 2 dzM 1)
6: |forlsjsTCdo|
T Load K, V; from HBM to on-chip SRAM. . . .
5 On chip, compute 8U) = QKT € RE-x. * Reducing read/write of O;: write O; to
9: On chip, compute m}j) = max(m,.(j_l),rowmax(Slgj))) € RBr, 155” = exp(S§j) - m}j)) € RBrxBe .
(pointwise), £ = em " -m? ¢4V 1 romsum(PY) € RF-. HBM after traversing all K/V blocks at
10: On chip, compute Ogj) e diag(e'"fl_”""f”)'logj_l) + lsgj)Vj. .
11: end for the inner |00p

12: On chip, compute O; = diag(fi(T“))‘IO}T‘).

13: On chip, compute L; = m™ +log(¢{™)). - Write back to HBM after the inner-loop:

14: WE€OF 66 HBM s the j-th btotk of 0. reducing HBM read/write compared with v1
15: White L; to HBM & fhe i-th block of L.

16: end for

17: Return the output O and the logsumexp L.

Flash Attention

* FlashAttention v2

e Better Work Partitioning

* A thread block is partitioned into multiple warps (32 threads per warp, 4~8 warps per block)

KY

Warp 1 Warp 2 Warp 3 Warp 4

Vv
Q
Warp 1-4 Warp 1
Warp 2
Slicing-K
Warp 3
Warp 4

Slicing K/V at each Warp while maining complete Q
QK™ has four partitions, and (QK')V needs
REDUCTION (write to shared memory, synchronize,
and add-up intermediate results)

KY

Warp 1-4
Q v
Warp 1
Warp 2 = = Warp 14
Slicing-Q
Warp 3

Warp 4
Accessed by all warps

Split across different warps

Slicing Q while keeping K/V accessible by all Warps
Each warp performs matrix multiply to obtain a slice
of QKT, and no intra-block communication

Flash Attention

* FlashAttention v2
e Better Work Partitioning

* A thread block is partitioned into multiple warps (32 threads per warp, 4~8 warps per block)

B/
dfwarp 1 fwarp 2 warp 3 warp 4 warp 1-~4
e e d e e 4
(T R R et RSt et e iy ‘ Br/4 | warp 1 | (7TiTTiitiomQRwarpoio---ooo-oooiely
Br! P Lo o Lo o Br et | ([TTTTTTTTTTTTanstassoocsoccoooocoooooo U ‘
Q e B O S O T R A Q LRt MURE
warp 1-4 EWM‘P 1 EWB-I‘P 2 EWM‘P 3 iwarp ’4 ‘ (,___"‘f‘-’_‘?f’,_%__:l , ________________ QK warp 3 7‘ ,':' |
B N B N Cwarpu O Kwarpd .
P P I e I Y U
v""""'F'-----"‘-f‘"""A"l‘"""‘l"
| warp 1 | warp 2 iwarp 3! iwarp 4 \ warp 1~4
V Reduction operation V
. needed
FlashAttention V1 FlashAttention V2

By Zhihu blogger: Antinomi

Flash Attention

e FlashAttention v2

* Performance speedup

Speed (TFLOPs/s)

200 A

150 A

100 A

50 4

Attention forward + backward speed (A100 80GB SXM4)

Pytorch
FlashAttention
xformers
FlashAttention Triton
FlashAttention-2

175 176

mn

512 1k

2k 4k
Sequence length

8k 16k

(a) Without causal mask, head dimension 64

Speed (TFLOPs/s)

200 1

150 4

100 4

50 1

Attention forward + backward speed (A100 80GB SXM4)

Pytorch
FlashAttention
xformers
FlashAttention Triton
FlashAttention-2

201 203

196

512 1k

2k 4k
Sequence length

8k 16k

(b) Without causal mask, head dimension 128

Attention forward + backward speed on A100 GPU

Flash Attention

e FlashAttention v2

* Performance speedup

Attention forward + backward speed (H100 80GB SXM5) Attention forward + backward speed (H100 80GB SXMS5)

= Pytorch . Pytorch

mam FlashAttention mam FlashAttention 220 326 335 338

Wm FlashAttention-2 206 W FlashAttention-2
T 300 4 7 288 294 » 300 4 -
~ ~
& 254 & 248
S 215 S
= 200 £= 200 1
= 15 15 16 16 1 1 ~ 160 167
D k5 12 2 2 3 3 13
v v 126
& 1004 8 86 87 S100{ =

72
62
00 00
512 1k 2k 4k 8k 16k 512 1k 2k ak 8k 16k
Sequence length Sequence length
(a) Without causal mask, head dimension 64 (b) Without causal mask, head dimension 128

Attention forward + backward speed on H100 GPU

Flash Attention

* Flash Decoding

* New challenges in autoregressive decoding
* Key (K) and Value (V) keep

o growing to be extraordinarily large
t Out of Memory error
[@ GPT_Z] E> « Swapping to CPU memory
which is very slow
I::te e (e e T Truncating the input causes

poor performance

Query (Q) length is always 1, i.e. the newly generated token

Source: https://sh-tsang.medium.com/review-gpt-2-nlp-26e7ce92d234

Flash Attention

* Flash Decoding

* Low efficiency due to small Q (i.e. sequence length of 1 in decoding)

I I I l _ Values

I JH1IRELE OO il Keys
Queries !

Output

Source: https://pytorch.org/blog/flash-decoding/

Flash Attention

* Flash Decoding

» Sharding Key and Value matrices (e.g. 5 pieces) in order to create many more
thread blocks

Values

Keys

Queries !

Output
Split 1/5 Split 2/5 Split 3/5 Split 4/5 Split 5/5
Thread Thread Thread Thread Thread
block 1 block 2 block 3 block 4 block 5

Source: https://pytorch.org/blog/flash-decoding/

Flash Attention

* Flash Decoding
* Computing attention scores with K/V splits using FlashAttention v1/v2

* Only obtaining local max and local sum
e Output O not properly scaled
* Launching an independent REDUCE kernel

* Obtaining global max and global sum

* Rescaling local O to obtain the final output

tok/s

Flash Attention

* Flash Decoding

Codellama-34b end-to-end decoding speed [bs=1, MP=4]

50
Setting \ Algorithm PyTorch Eager Flash-Attention v2.0.9 | Flash-Decoding
B=256, seqlen=256 3058.6 390.5 63.4
“7 B=128, seqlen=512 3151.4 366.3 67.7
1 B=64, seqlen=1024 3160.4 364.8 77.7
o i B=32, seqlen=2048 3158.3 352 58.5
i B=16, seqlen=4096 3157 401.7 57
B=8, seqlen=8192 3173.1 529.2 56.4
201 [B=4, seqlen=16384 3223 582.7 58.2
| B=2, seqlen=32768 3224.1 1156.1 60.3
- i B=1. seqlen=65536 1335.6 2300.6 64.4
b I \ 4 B=1, seqlen=131072 2664 4592.2 106.6
—— FT attention
—— flash-decoding

103 10*
Prompt length

Flash Decoding versus Flash Attention

Flash Attention v3

 Hardware improvement (only for your reference)

Tensor width

 TMA (Tensor Memory Accelerator) Warpgroup Matrix Multiply-Accumulate

il H100 FP16

5

(5]

ra padding or

2 Y

= T N

@ 395 W
/ > » Tensor EEEE §

base addr i stride SEEE \

* Asynchrony

e Overlap overall computation and data movement

via warp-specialization and interleave

block-wise matmul and softmax operations

Source: FlashAttention-3: Fast and Accurate Attention with Asynchrony and Low-precision

Inference Optimization: Outline

e Overview

* Attention Computation Optimization
* Sparse Attention
* Linear Attention

* Flash Attention
e Continuous Batching
e KV Cache Optimization
* Speculative Decoding

 Distributed Serving

Batching to Meet Compute-Bound

* Why batching multiple requests?

* Generating tokens for a large number of prompts to match the compute bound

A
O Decoding BS=1

125 TFLOP/s
Wasted FLOPS | <« p /\ /\ @ Decoding Bs=32

: Compute Bound
N / ‘ Decoding BS=128

\o
X

Attainable Performancg(-T?LOPls)

)

/\ Prefill Seq=512
AN

1
1
1
1
1
1
'
60 1 Prefill Seq=64
o
& I
¢ ! .
I Prefill Seq=256
. L
1
1
1
1
1

>
Arithmetic Intensity(FLOP/byte)

Roofline model of NVIDIA V100 GPU

Static Batching

* Naively serving multiple requests simultaneously

* Unequal input sequence lengths, unknown output sequence lengths

_ _ Wait until the previous

batch 1

prefill decode

- batch 2
!
new requests | ——
arrive |

Request #

Elapsed Time

Static Batching

One prefill

Batched 3enera‘tion /
Padding

yput bateh (220 (Spnd) (Soow>) (o][ote)(tre J(e J—(]

)
2,7, d] @]m[om [Surj his)@@ec’tj%[will J

ot o () () (o) () () () (e))~ (=)
2040 (@ow)(3) (Com) (o) (e)) 2]

8

Forward pass

Forward pass

Lnput batch (4pad>) (Cpact>] (Gbos>) ((who | ate)((the [pie [7)(<eos>]— aste of compute
241 (@) (2 (Con) (ore) () () Gt () e) (e) -
ntil the longest request

Forward pass =======cmm oo oo eeeemeeeeeeeeeeoeeee oo

Input batch [(pach [<P°‘ﬂ ((bos>J[Who J(o“te][The][pe][?]@os)} [(e_os>) more {eos>* of the batch finishes
[2,1, d] @o*@][I][am][sure 'ths pro l Jeet '(will }]

[SHAPE] () Mew tokens

e) ..

2 - batch size is 2 ‘
_ - nb of tokens in the batch D Old tokens, stored in cache
d - token hidden dim S Pad token

Source: https://huggingface.co/blog/continuous_batching

Dynamic Batching

* Insert an inference request in the queue

Input batch
[2, 6 4]

:Dt/now«ic Ba‘tcmng

Tnput batch (4pad>) (<pad>] [(Bos>][Wkoj(ate J[the J(pie j%
B (o)) (o) e) o) (e)) — (o

Input batch (Spad>) (Gpad>) (<bos>] ((wio)(ate J((the (gt J(7]—>(¢eov)
(2,141 (o>](£ [am | suee |(tws | pro J(ject J[“’_'“J%

(o>][1

but much Pao(ol ing «(
Prefill first: waiting for [SHAPE] () Wew tokens

new prompt prefilling 2 - bateh size is 2 () ol tokens, stored in cacke

_ - nb of tokens in the batch
d - token hidden dim () Podl tokens

|[dea Batching

* Concatenating prompts
* Decode is equivalent to prefill with sequence length of 1

* Decode and Prefill of different prompts operate simultaneously without bubbles

Prompt 0 Pro»«pt 1

(@) () (e)%) e) (@) 7)) (o) (o)= (o)
\ /

D
¢

e [[[[0)))

Concatenated prompt

Continuous Batching

* Continuous batching = ragged batching + ideal dynamic batching

Attention scores of tokens belonging to Ra%ed Batch;ng

prompt 0 and prompt 1 should not be

computed together . 00000 D GU*@*D O EJ

(»=-1000000000000 Ty

Prompt 0 | 00000 D OO O0UOQ e yree

* Ragged batching because sequence lengths 8 8 8 8 88 8 8 8 8 8 8;
are 'ragged' or uneven, no need for padding 8 8 8 % 88 8 8 % 8 8 8
tokens (~)000008eB0000
Pmth“D 0000cBedadud
“=J00000eEEEEO0
(~-300000CEEEEEE0U

e JOOU0OO0COOEAEG O

Py () “Felse’ in oibbention mask

Oo"D “True' n attention mask

Source: https://huggingface.co/blog/continuous_batching

Continuous Batching

* Question remains unsolved: how to make prefill of new requests and decode of
existing requests operate in parallel?

Query 1 , Query 1l
First Token : Completedi
)
1
: Query 2 : Query 2
.] 1 1
: First Token Query 3 1 Completed; Query 3
I
I

First Token 1

]
I

I

Continuous batching without chunked prefill

Completed ,

Source: Streamlining Al Inference Performance and Deployment with NVIDIA TensorRT-LLM Chunked Prefill

Chunked Prefill

 Chunked Prefill

 Elastic Scheduling: split the entire prompt into smaller chunks: more
scheduling flexibility and enables mixing prefill and decode.

* Decode-Maximal Batching: combine a single prefill chunk with multiple
decode requests in the same batch, allowing decode operations to
"piggyback" on the more compute-intensive prefill operations

Query 1 Query 1
First Token ! Completed !

Query 2 Query 2
First Token Completed

Query 3 _
First Token

Prefill Prefill Prefill
Prefill Prefill Prefill
Chunk 1 Chunk 2 Chunk 3
Prefill Prefill
Chunk Chunk

Decode

Prefill

’ l----_

Query 3 _
Completed:

Decode

Time

Source: Streamlining Al Inference Performance and Deployment with NVIDIA TensorRT-LLM Chunked Prefill

Chunked Prefill

 Combined together to acquire a global view of complete prefill

KO | K1 | k2 | k3 Mask is a lower triangular matrix
qo[1 - - -
ql] 1 1 -

1 1 K/V being loaded 2 times
q

q3| 1 1 1 1 by late
attention mask during first chunk prefill

Mask is a trapezoid matrix
ko | k1| k2| k3 | a | kv6 | k6 | k7
g4 1 1 1 1 1 : : :

\4

q5| 1 1 1 1 1 1 - -
q6| 1 1 1 1 1 1 1 - : :
= 1] 1 1] » K/V being loaded 1 time
attention mask during second chunk prefill

ko | k1| k2| k8 | ¢ | k5 | k6 | k7 | k8 | k9 | k10| K11 , : :
R 1 ; 1 1 ; ; . y . Mask is a trapezoid matrix
q9| 1 1 1 1 1 1 1 1 1 1 - -
q10| 1 1 1 1 1 1 1 1 1 1 1 -
q11| 1 1 1 1 1 1 1 1 1 1 1 1

attention mask during third chunk prefill

Attention mask matrices for successive prefill chunks

Continuous Batching

* Continuous batching = ragged batching + dynamic batching

Continuous ,oo\‘tching

Initial prompts: ['Who ate the pie", "I am sure this project”, "The largest animal']

dbos> Batch structure:

+ 1 prompt w/ 5 tokens (preFi“)

ﬂ'

ho
M:S

tokens ate

MaXimum

e

O0O0O0OO («)
ate
the

OO0
OO0OCad
O0O00Od
CO000O Lee

a'
T
'

“normal” mask

Source: https://huggingface.co/blog/continuous_batching

Continuous Batching

* Continuous batching = ragged batching + dynamic batching

RIDCOCGHEAE
D D O C O O D O D 06@ Batch structure:
O D O C D G D D D D + 1 prompt w/ 1 tokens (decode) ‘
D O D C D D D : D O + 1 prompt w/ 4 tokens (chunked prefill)
(~-J000000B8eaead
-]JJUU00000080

Forward pass =====ee=cccccccccccccccccccccccccccccccccccncccccccccccaaca-

“ragged” mask

Source: https://huggingface.co/blog/continuous_batching

Continuous Batching

* Continuous batching = ragged batching + dynamic batching

JEEHE0
= 000000000 Batch structure:
000000000 + 1 prompt w/ 3 tokens (end of chunked prefill
00000000 0—=w] + 1 prompt w/ 2 tokens (chunked prefill)
i

“ragged” mask

Source: https://huggingface.co/blog/continuous_batching

Thanks!

