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Disclaimer

Machine learning systems is a broad and rapidly evolving field. 
The course material has been developed using a broad 
spectrum of resources, including research papers, lecture slides, 
blogposts, research talks, tutorial videos, and other materials 
shared by the research community. Sometimes external 
animations and exquisite pictures are heavily reused. 



Inference Optimization: Outline

• Overview

• Attention Optimization

• Continuous Batching

• KV Cache Optimization

• Speculative Decoding

• Distributed Serving



Overview

• Decoder-only Transformer

GPT (Generative Pre-trained Transformer) is the first decoder-only Transformer model

Source: The Rise of LLMs: From GPT to Modern Innovations



Overview

• Decoder-only Transformer
• Generating a probabilistic distribution over possible next token, and a 

decoding algorithm is employed to select the actual output token

Next-token prediction, i.e. generating output tokens one by one
Source: The Rise of LLMs: From GPT to Modern Innovations



Overview

• Autoregressive Decoding
• “Prefill” refers to the initial parallel computation phase where the model 

processes the entire input prompt for subsequent token-by-token generation

Source: Prefill and Decode for Concurrent Requests - Optimizing LLM Performance

Parallelizable

https://huggingface.co/blog/tngtech/llm-performance-prefill-decode-concurrent-requests


Overview

• Prefill: highly parallelizable 
• A small batch size can ”saturate” GPU computation

• Parallelization over batch size, header size, sequence length and thread-block tiling

Source: Jia-Bin Huang from University of Maryland College Park 
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Overview

• Autoregressive Decoding
• “Decode” refers to the iterative process of generating output tokens one at a 

time, where each new token is predicted based on the input prompt and all 
previously generated tokens

Hard to be parallelized

Source: Prefill and Decode for Concurrent Requests - Optimizing LLM Performance

https://huggingface.co/blog/tngtech/llm-performance-prefill-decode-concurrent-requests


Overview

• Why Caching KV?

𝑄
𝐾!
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Decode without caching

• Decode: much less computes

new output

new query vector

new key vector

new value vector



Overview

• Decode: much less computes
• Why caching Key and Value, other than Query

𝑄𝑡

𝐾!

𝑆𝑡 = 𝑄𝑡𝐾!

×Softmax( )

Decode Compute output token one by one

𝑌𝑡
=

𝑉

Newly computed
Could be cached



Overview

• An animation



Overview

• Why Caching KV?
• Reducing redundant computations for KEYs and VALUEs

• Increasing memory consumption

2 2
K/V Float16

8096 80

Sequence length

××× ×
# of layers

64

# of heads

× 64
dimension ~10.6 GB!



Overview

• Autoregressive Decoding
• Token generation core metrics: TTFT and TPOT (time per output token)

Source: Prefill and Decode for Concurrent Requests - Optimizing LLM Performance

https://huggingface.co/blog/tngtech/llm-performance-prefill-decode-concurrent-requests


Overview

• Hierarchical GPU Memory
• I/O throughput versus memory size

Source: https://docs.nvidia.com/deeplearning/performance/dl-performance-gpu-background/index.html

Insufficient to store data at 
SRAM: load from HBM to 

SRAM and write back to HBM

A macroscope view of I/O tradeoff (V100) 

L1 instruction cache: 192KB per SM * 108 SM ~20MB
Data flow: DRAM/L2 Cache to/from L1 Cache, much 
slower than computing 



Overview

• Prefill and Decode
• Prefill: Compute intensive with GEMM, Decode: memory I/O intensive with GEMV

Roofline model of NVIDIA V100 GPU

Wasted FLOPS



Overview

• Prefill and Decode
• Prefill: Compute intensive, Decode: memory I/O intensive

• Prefill saturates GPU compute 

    even at batch size of 1

• Decode  under-utilizes GPU

    compute and costs as much

    as 200 times prefill for bs=1

Per-token prefill and decode time with different batch sizes 
(sequence length = 1024) for LLaMa-13B on A6000 GPUSource: SARATHI: Efficient LLM Inference by Piggybacking Decodes with Chunked Prefills



Overview

• Very Large-scale LLM Inference

Full model size with 256 experts

Long context and high 
request loads



Overview

• Versatile communication medium
• Transmission delay emerges

PCIe Link
e.g. CPU – GPU with 

up to 128GB/s bandwidth

NVLink
e.g. GPU – GPU

in total 1.8TB/s bandwdith

RoCE
e.g. Machine – Machine

up to 800 Gbps



Overview

• Challenges of LLM Inference
• New token generation paradigm

• Prefill and Decode

• Hierarchical memory
• Fast I/O small size versus slow I/O large size

• Heterogeneous bandwidth
• High intra-machine bandwidth versus low inter-machine bandwidth

• To emphasize
• many optimization methods, e.g. attention optimization can be employed for 

model training (e.g. sparse attention, linear attention, flash attention)

Source: Jia-Bin Huang from University of Maryland College Park 



Inference Optimization: Outline

• Overview

• Attention Optimization
• Sparse Attention
• Linear Attention
• Flash Attention
• Continuous Batching

• Continuous Batching

• KV Cache Optimization
• Speculative Decoding
• Distributed Serving



Attention Optimization
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Parameters

Token

Query matrix: 𝑄 ∈ ℝ!×#

𝐾 ∈ ℝ!×#Key matrix: 

Attention score matrix: ℝ!×!

∈ 𝑅/ ∈ 𝑅/ ∈ 𝑅/ ∈ 𝑅/ ∈ 𝑅/

∈ 𝑅/×/𝑊!

∈ 𝑅/×/𝑊"

∈ 𝑅/×/𝑊#

Source: Jia-Bin Huang from University of Maryland College Park 



Attention Optimization

• Real-world operations
• Transferring both matrices from global memory to shared memory for 

computing, and write the result back to global memory progressively

• Complexity
• Computation:  𝑂(𝑁1𝑑) 

• Considering multiplications and additions à computing time 𝑇$ =
%&!'
$

• Communication:   𝑂(𝑁1) 

• Considering bidirectional I/O read/write à communication time 𝑇(/* =
%∗(&!-%&')

/

• Global storage:   𝑂(𝑁1) 

(partially ) overlapped

GPT3 with 10K tokens in FP16: 
200MB per head per layer 



Attention Optimization

• Real-world operations
• Transferring both matrices from global memory to shared memory for 

computing, and write the result back to global memory progressively

• Complexity
• Computation:  𝑂(𝑁1𝑑) 

• Considering multiplications and additions à computing time 𝑇$ =
%&!'
$

• Communication:   𝑂(𝑁1) 

• Considering bidirectional I/O read/write à communication time 𝑇(/* =
%∗(&!-%&')

/

• Global storage:   𝑂(𝑁1) 

Computation, I/O and storage should all be optimized!



Sparse Attention

• Sparse attention
• reduce computational and memory cost by only computing attention for a 

subset of token pairs instead of all pairs

• evidence from machine learning community (e.g. Rewon Child, 2019)

• Sparse attention patterns
• Position-based sparse attention: rule-based or heuristic methods to decide 

the positions where the interactions of these pair-wise tokens are important

• Content-based sparse attention: tokens selectively attending only to other 
tokens that are relevant based on their representations



Position-based Sparse Attention

• Global attention
• global nodes act as an information hub, allowing them to attend to every 

other node in the sequence

Query

Key
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Not stored in memory

A bipartite graph illustration of QKT  computation



Position-based Sparse Attention

• Band attention
• often termed “local attention” or “sliding window attention”, in which a 

node’s attentions are confined to neighboring nodes in a local window

Query

Key
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• Reducing complexity from 𝑂(𝑁%) 

to 𝑂(𝑘𝑁) 

• Limited receptive field (cannot 
capture long-range dependencies)

• Sacrificing context modeling 
ability: slow information 
propagation



Position-based Sparse Attention

• Dilated attention
• using a dilated window with gaps of dilation equal to or greater than 1

• Reducing complexity from 
𝑂(𝑁!) to 𝑂(𝑘𝑁) 

• Missing fine-grained, short-
range dependencies (failure to 
capture important neighbors in 
those gaps)

Query

Key
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Position-based Sparse Attention

• Random attention
• each query randomly samples a few keys for better capturing non-local 

interactions



Position-based Sparse Attention

• Block attention
• input sequence segmented into multiple non-intersection query blocks and 

each block assigned a local memory block

Query

Key
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Position-based Sparse Attention

• COMPOUND attention

https://wikidocs.net/198820

• BigBird : local + global + random yields dense-equivalent performance
• Increased implementation complexity, more hyperparameters to tune and potential redundancy



Position-based Sparse Attention

• Representative sparse attentions in a nutshell

Source: Speed Always Wins: A Survey on Efficient Architectures for Large Language Models



Content-based Sparse Attention

• Routing transformer

𝒙1 𝒙2 𝒙3 𝒙4 𝒙5 𝒙6 𝒙7 𝒙8

𝑊$𝑊%𝑊$𝑊%𝑊$𝑊% 𝑊$𝑊% 𝑊$𝑊%𝑊$𝑊%𝑊$𝑊% 𝑊$𝑊%

𝒒1 𝒒2 𝒒3 𝒒4 𝒒5 𝒒6 𝒒7 𝒒8𝒌1 𝒌2 𝒌3 𝒌4 𝒌5 𝒌6 𝒌7 𝒌8𝒒1 𝒒2 𝒒3 𝒒4 𝒒5 𝒒6 𝒒7 𝒒8𝒌1 𝒌2 𝒌3 𝒌4 𝒌5 𝒌6 𝒌7 𝒌8

Clustering (approximate & fast)

Source: Jia-Bin Huang from University of Maryland College Park 



Content-based Sparse Attention

• Routing transformer

𝒙1 𝒙2 𝒙3 𝒙4 𝒙5 𝒙6 𝒙7 𝒙8

𝑊$𝑊%𝑊$𝑊%𝑊$𝑊% 𝑊$𝑊% 𝑊$𝑊%𝑊$𝑊%𝑊$𝑊% 𝑊$𝑊%

𝒒1 𝒒2 𝒒3 𝒒4 𝒒5 𝒒6 𝒒7 𝒒8𝒌1 𝒌2 𝒌3 𝒌4 𝒌5 𝒌6 𝒌7 𝒌8

𝒒1 𝒒2 𝒒3 𝒒4 𝒒5 𝒒6 𝒒7 𝒒8𝒌1 𝒌2 𝒌3 𝒌4 𝒌5 𝒌6 𝒌7 𝒌8

K-means Clustering (approximate & fast)

Source: Jia-Bin Huang from University 
of Maryland College Park 



Content-based Sparse Attention
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• {𝑞1, 𝑞4, 𝑞6, 𝑘1, 𝑘3}

• {𝑞2, 𝑘1, 𝑘4, 𝑘8}

• {𝑞3, 𝑞5, 𝑘6}

• {𝑞7, 𝑞8, 𝑘2, 𝑘5, 𝑘7}

Source: Jia-Bin Huang from University of Maryland College Park 



Content-based Sparse Attention

• Routing transformer: summary
• attention scores in scaled dot-product rely on the similarity between 𝑄 and 𝐾 
à approximated by grouping them in a shared projection space
• needs to be double checked by our students manually

• each query only needs to attend to keys within its assigned cluster (typically
𝑛	 in size), reducing complexity to 𝑂(𝑛 𝑛)	while preserving relevant long-

range dependencies

• cluster centroids are learned during training, allowing the model to adaptively 
group based on content



Content-based Sparse Attention

• Reformer: using locality-sensitive hashing (LSH) instead of dot-
product attention

Source: Reformer: The Efficient Transformer

• Using locality-sensitive hashing (LSH) to 
select key-value pairs for each query

• Using Reversible Transformer to reduce 
memory usage during training

• Similar items (queries and keys) falling in 
the same bucket with high probability

• Processing sequences of length 64K 
tokens or more efficiently



Inference Optimization: Outline

• Overview

• Attention Optimization
• Sparse Attention
• Linear Attention

• Flash Attention

• Continuous Batching

• KV Cache Optimization

• Speculative Decoding

• Distributed Serving
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Source: Jia-Bin Huang from University of Maryland College Park 
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Obstacle

• Softmax prevents this reordered GEMM
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Softmax 1
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Source: Jia-Bin Huang from University of Maryland College Park 



Linear Attention

• Computing Softmax (Katharopoulos et al., 2020)

• Substituting exp by

• there exists 

𝑜$ =*
%&$

'

𝛼$,% 	𝑣% *
%&$

'
exp 𝑞$ ⋅ 𝑘%

∑)&$' exp 𝑞$ ⋅ 𝑘)
𝑣%=

exp 𝑞 ⋅ 𝑘 ≈ 𝜙 𝑞 𝜙 𝑞⋅

𝑜$ ≈*
%&$

'
𝜙 𝑞$ ⋅ 𝜙 𝑘%

∑)&$' 𝜙 𝑞$ ⋅ 𝜙 𝑘)
𝑣%

Kernel function

Source: Jia-Bin Huang from University of Maryland College Park 



Linear Attention

• Overall Output: complexity order 𝑂(𝑁) 

• An example: denominator of 𝑜1 

𝑂 ≈ 𝜙 𝑄 𝜙 𝐾 𝑉 ,   ⋅ 𝑂, 𝑄, 𝐾, 𝑉	 ∈ 	 ℝ;×<
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𝑞77
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𝑞7/
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Source: Jia-Bin Huang from University of Maryland College Park 



Linear Attention

• Iterative computation to further reduce complexity

• where

*
%&$

'
𝜙 𝑞$ ⋅ 𝜙 𝑘%

∑)&$' 𝜙 𝑞$ ⋅ 𝜙 𝑘)
𝑣%𝑜$ ≈

C
?@1

;

𝜙 𝑞1 ⋅ 𝜙 𝑘? 𝑣? = 𝜙 𝑞1 ! C
?@1

;

𝑘?𝑣?!

𝑆A =C
?@1

A

𝑘?𝑣?! ∈ 𝑅<×<

𝑆A = 𝑆AB1 + 𝑘A𝑣A!

𝑜A = 𝜙 𝑞A !𝑆A
Source: Jia-Bin Huang from University of Maryland College Park 



Linear Attention

• Today’s Linear Attention
• Baby linear attention: Linear Transformer, SANA, CHELA, LightningAttention, etc. 

• Efficient in computation, I/O, storage

• Performance loss compared with Softmax

• More advanced linear attention:
• Delta rule

• Gamma forget

• Gated attention

• Qwen3-Next and Kimi-linear, and many others



Inference Optimization: Outline

• Overview

• Attention Computation Optimization
• Sparse Attention
• Linear Attention
• Flash Attention
• Continuous Batching

• KV Cache Optimization

• Speculative Decoding

• Distributed Serving



Flash Attention

• Prior works
• Reducing # of scaled dot-product, potentially sacrificing attention performance

• Compute is fast while reading 𝐾 and 𝑉, and writing 𝑆	back the results are slow

• Challenges
• I/O cost of loading/storing 𝑄, 𝐾 and 𝑉 are non-trival



Flash Attention

• From Softmax to Safe Softmax

• Online Safe Softmax: not enough space to store entire 𝑥

• Alg1: three-pass algorithm

𝑚(: 	max)*+( {𝑥)}

𝑑(: 	A
)*+

(
𝑒,!-." is the denominator of Softmax

𝑎(: is the final Softmax output

with initial value 𝑚/ = −∞



Flash Attention

• Online Safe Softmax
• 𝑑9 can be computed iteratively



Flash Attention

• Online Safe Softmax
• One-pass safe softmax 

algorithm does not exist

• Safe softmax is only our 
intermediate result: 

  
𝑂 = Softmax 𝑄𝐾F 𝑉



Flash Attention

• One-pass Attention
• Define an “intermediate” output • Compute it iteratively 

Flash Attention



Flash Attention

• Pseudocode of Flash Attention

Tiling: loading and computing at the block granularity

Outer Loop on Key/Value

Inner Loop on Key/Value



𝑁

𝑑6

𝑑6

𝑁

𝑄

𝐾!

𝑉

𝑑5

𝑁

𝑆 = 𝑄𝐾!
𝑃 = softmax 𝑆
𝑂 = 𝑃𝑉

Source: Jia-Bin Huang from University of Maryland College Park 



𝑁

𝑑6

𝑑6

𝑁

𝑄

𝐾!

𝑉

𝑑5

𝑁

𝑆 = 𝑄𝐾!
𝑃 = softmax 𝑆
𝑂 = 𝑃𝑉

Source: Jia-Bin Huang from University of Maryland College Park 



𝑁

𝑑6

𝑑6

𝑁

𝑄

𝐾!

𝑉

𝑑5

𝑁

𝑆 = 𝑄𝐾!
𝑃 = softmax 𝑆
𝑂 = 𝑃𝑉Copy Block to SRAM

CopyCopy
Compute Block on 
SRAM

Output to HMB

𝑂 = softmax 𝑄𝐾0 𝑉

Source: Jia-Bin Huang from University of Maryland College Park 



𝑁

𝑑6

𝑑6

𝑁

𝑄

𝐾!

𝑉

𝑑5

𝑁

𝑆 = 𝑄𝐾!
𝑃 = softmax 𝑆
𝑂 = 𝑃𝑉Copy Block to SRAM

Copy

Copy

Compute Block on 
SRAM

Output to HMB

𝑂 = softmax 𝑄𝐾0 𝑉

Source: Jia-Bin Huang from University of Maryland College Park 



𝑁

𝑑6

𝑑6

𝑁

𝑄

𝐾!

𝑉

𝑑5

𝑁

𝑆 = 𝑄𝐾!
𝑃 = softmax 𝑆
𝑂 = 𝑃𝑉Copy Block to SRAM

Copy

Copy

Compute Block on 
SRAM

𝑂 = softmax 𝑄𝐾0 𝑉

Output to HMB

Source: Jia-Bin Huang from University of Maryland College Park 



𝑁

𝑑6

𝑑6

𝑁

𝑄

𝐾!

𝑉

𝑑5

𝑁

𝑆 = 𝑄𝐾!
𝑃 = softmax 𝑆
𝑂 = 𝑃𝑉Copy Block to SRAM

Copy

Copy

Compute Block on 
SRAM

𝑂 = softmax 𝑄𝐾0 𝑉

Output to HMB

Source: Jia-Bin Huang from University of Maryland College Park 



𝑁

𝑑6

𝑑6

𝑁

𝑄

𝐾!

𝑉

𝑑5

𝑁

𝑆 = 𝑄𝐾!
𝑃 = softmax 𝑆
𝑂 = 𝑃𝑉Copy Block to SRAM

Copy

Copy

Compute Block on 
SRAM

𝑂 = softmax 𝑄𝐾0 𝑉

Output to HMB

Source: Jia-Bin Huang from University of Maryland College Park 



𝑁

𝑑6

𝑑6

𝑁

𝑄

𝐾!

𝑉

𝑑5

𝑁

𝑆 = 𝑄𝐾!
𝑃 = softmax 𝑆
𝑂 = 𝑃𝑉Copy Block to SRAM

Copy
Compute Block on 
SRAM

𝑂 = softmax 𝑄𝐾0 𝑉

Source: Jia-Bin Huang from University of Maryland College Park 



𝑁

𝑑6

𝑑6

𝑁

𝑄

𝐾!

𝑉

𝑑5

𝑁

𝑆 = 𝑄𝐾!
𝑃 = softmax 𝑆
𝑂 = 𝑃𝑉Copy Block to SRAM

Copy

Compute Block on 
SRAM

𝑂 = softmax 𝑄𝐾0 𝑉

Copy

Source: Jia-Bin Huang from University of Maryland College Park 



𝑁

𝑑6

𝑑6

𝑁

𝑄

𝐾!

𝑉

𝑑5

𝑁

𝑆 = 𝑄𝐾!
𝑃 = softmax 𝑆
𝑂 = 𝑃𝑉Copy Block to SRAM

Copy

Compute Block on 
SRAM

𝑂 = softmax 𝑄𝐾0 𝑉

Copy

Source: Jia-Bin Huang from University of Maryland College Park 



𝑁

𝑑6

𝑑6

𝑁

𝑄

𝐾!

𝑉

𝑑5

𝑁

𝑆 = 𝑄𝐾!
𝑃 = softmax 𝑆
𝑂 = 𝑃𝑉Copy Block to SRAM

Copy

Compute Block on 
SRAM

𝑂 = softmax 𝑄𝐾0 𝑉

Copy

Source: Jia-Bin Huang from University of Maryland College Park 



𝑁

𝑑6

𝑑6

𝑁

𝑄

𝐾!

𝑉

𝑑5

𝑁

𝑆 = 𝑄𝐾!
𝑃 = softmax 𝑆
𝑂 = 𝑃𝑉Copy Block to SRAM

Copy

Compute Block on 
SRAM

𝑂 = softmax 𝑄𝐾0 𝑉

Copy

Source: Jia-Bin Huang from University of Maryland College Park 



𝑁

𝑑6

𝑑6

𝑁

𝑄

𝐾!

𝑉

𝑑5

𝑁

𝑆 = 𝑄𝐾!
𝑃 = softmax 𝑆
𝑂 = 𝑃𝑉Copy Block to SRAM

Copy

Compute Block on 
SRAM

𝑂 = softmax 𝑄𝐾0 𝑉

Copy

Outer Loop

In
ne
rL
oo
p

Source: Jia-Bin Huang from University of Maryland College Park 



Flash Attention

• Flash Attention (Tiling)

×

Query
Block 1

Query
Block 2

Query
Block 3

Key Block 1‘

Value Block 1

×



Flash Attention
• Kernel Fusion
• Multiple separate operations or kernels (small, independent programs that run on 

hardware like GPUs) are combined or "fused" into a single, more efficient kernel.

Pay the launch overhead once 
instead of many times

Source: Kernel Fusion: A Smart Way to Enhance Neural Networks Performance 



Flash Attention
• Kernel Fusion
• Minimizing data movement between slow global memory and faster on-chip 

memory (like SRAM or registers), avoids storing intermediate results

Source: Kernel Fusion: A Smart Way to Enhance Neural Networks Performance 

Multiple smaller memory transactions

Single memory transaction for 32 consecutive elements



Flash Attention

• Kernel Fusion
• FlashAttention kernel fusion combining multiple (block-wise) steps of the 

attention computation—such as scaling, masking, softmax normalization, and 
matrix multiplications—into custom fused CUDA kernels

6 - 7 × improvement



Flash Attention
• Complexity Analysis
• GPT2 Medium (seq. length 1024, head dim. 64, 16 heads, batch size 64)  on A100

• Computational complexity: Flash Attention is slightly higher
• Memory complexity: Flash Attention is significantly better 𝑂(𝑁𝑑)
• I/O complexity

• Standard Attention 𝑂(𝑁%𝑑) versus Flash Attention 𝑂(𝑁%𝑑%𝑀&#) 
• Outer loop runs 𝑇1 = ⁄𝑁 𝐵1 = ⁄4𝑑 𝑀 where 𝑀 is SRAM size of a SM, and reads 𝐾 and 𝑉	once

• Inner loop reads 𝑄, 𝑂, and write 𝑂 back to HBM

• Total I/O complexity: 𝑂 𝑁𝑑 ×𝑇1 = 𝑂(𝑁2𝑑2𝑀-+)



Flash Attention

• Flash Attention in practice
• Impact of hyper parameters:

   Larger block size reduces the number 

   of data loading, thus improving 

   the forward runtime

• As hidden dimension becomes large, the block size shrinks
•  𝑂 𝑁%𝑑%𝑀&#  is quadratic to the hidden dimension 𝑑, while 𝑀 is constrained by the hardware

Forward runtime of FlashAttention



Flash Attention

• Flash Attention
• Underutilized streaming multi-processors for small batch size but long sequences

Grid of Thread Blocks

• GPU grid
• Flash Attention enables Parallel computing 

on batches and heads

• The grid consists of batch_size × 
head_number thread blocks
• Batch_size = 2 and head_number = 16, meaning 

that only 16 out of 108 SMs are used on A100



Flash Attention

• Flash Attention v2
• Making FlashAttention sequence parallel

• The shape of a grid: grid(num_m_block, batch_size, num_heads)

head1 head2

Key’ head 1

Key’ head 2

Value head 1

Value head 2

Query

Sequence parallelism
Only slicing 𝑄

Key’ head 1

Key’ head 2

Value head 1

Value head 2



Flash Attention

• Flash Attention v2: Loop Reordering

FlashAttention forward pass: key K is partitioned into two 
blocks and value V is also partitioned into two blocks

Source: Flash Attention v2



Flash Attention

• FlashAttention v2
• Algorithm: fewer non-matmul FLOPs

• GPU is highly optimized on matmul (e.g. Tensor Cores)

• NVIDIA A100 GPU: 312 TFLOPs/s of FP16/BF16 matmul, only 19.5 TFLOPs/s of non-matmul FP32

Scaling at this round in FlashAttention v1

Scaling at next round
Only scaling the final result in FlashAttention v2

FlashAttention v2: reduce the number of 
rescaling ops, as well as bound-checking 

and causal masking operations
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Flash Attention

• Flash Attention v2: Loop Reordering
• Maintaining the same order of I/O 

complexity: 𝑂(𝑁'𝑑'𝑀%&)
• Reducing read/write of 𝑂$: write 𝑂$ to 

HBM after traversing all K/V blocks at 
the inner loop

Outerloop: traversing Q submatrices first; 
Innerloop: traversing K and V submatrices

Write back to HBM after the inner-loop: 
reducing HBM read/write compared with v1



Flash Attention

• FlashAttention v2
• Better Work Partitioning

• A thread block is partitioned into multiple warps (32 threads per warp, 4~8 warps per block)

• Slicing K/V at each Warp while maining complete Q
• QKT has four partitions, and (QKT)V needs 

REDUCTION (write to shared memory, synchronize, 
and add-up intermediate results)

• Slicing Q while keeping K/V accessible by all Warps
• Each warp performs matrix multiply to obtain a slice 

of QKT, and no intra-block communication   

Slicing-K Slicing-Q



Flash Attention

• FlashAttention v2
• Better Work Partitioning

• A thread block is partitioned into multiple warps (32 threads per warp, 4~8 warps per block)

By Zhihu blogger: Antinomi

Reduction operation 
needed



Flash Attention

• FlashAttention v2
• Performance speedup

Attention forward + backward speed on A100 GPU



Flash Attention

• FlashAttention v2
• Performance speedup

Attention forward + backward speed on H100 GPU



Flash Attention

• Flash Decoding
• New challenges in autoregressive decoding

Query (Q) length is always 1, i.e. the newly generated token

• Key (𝐾) and Value (𝑉) keep 
growing to be extraordinarily large

• Out of Memory error

• Swapping to CPU memory 
which is very slow

• Truncating the input causes 
poor performance

Source: https://sh-tsang.medium.com/review-gpt-2-nlp-26e7ce92d234



Flash Attention

• Flash Decoding
• Low efficiency due to small 𝑄 (i.e. sequence length of 1 in decoding)

Source: https://pytorch.org/blog/flash-decoding/



Flash Attention

• Flash Decoding
• Sharding Key and Value matrices (e.g. 5 pieces) in order to create many more 

thread blocks

Thread 
block 1

Thread 
block 2

Thread 
block 3

Thread 
block 4

Thread 
block 5Source: https://pytorch.org/blog/flash-decoding/



Flash Attention

• Flash Decoding
• Computing attention scores with K/V splits using FlashAttention v1/v2

• Only obtaining local max and local sum 

• Output 𝑂 not properly scaled

• Launching an independent REDUCE kernel 
• Obtaining global max and global sum 

• Rescaling local 𝑂 to obtain the final output



Flash Attention

• Flash Decoding

Flash Decoding versus Flash Attention



Flash Attention v3

• Hardware improvement (only for your reference)

• TMA (Tensor Memory Accelerator)           Warpgroup Matrix Multiply-Accumulate

• Asynchrony
• Overlap overall computation and data movement 
    via warp-specialization and interleave 
    block-wise matmul and softmax operations

Source: FlashAttention-3: Fast and Accurate Attention with Asynchrony and Low-precision 



Inference Optimization: Outline

• Overview

• Attention Computation Optimization
• Sparse Attention
• Linear Attention

• Flash Attention

• Continuous Batching

• KV Cache Optimization

• Speculative Decoding

• Distributed Serving



Batching to Meet Compute-Bound

• Why batching multiple requests?
• Generating tokens for a large number of prompts to match the compute bound

Roofline model of NVIDIA V100 GPU

Wasted FLOPS



Static Batching

• Naively serving multiple requests simultaneously
• Unequal input sequence lengths, unknown output sequence lengths

Wait until the previous 
batch finishes



Static Batching
One prefill

Until the longest request 
of the batch finishes

Padding

Source: https://huggingface.co/blog/continuous_batching



Dynamic Batching

• Insert an inference request in the queue

Prefill first: waiting for 
new prompt prefilling



Idea Batching

• Concatenating prompts
• Decode is equivalent to prefill with sequence length of 1

• Decode and Prefill of different prompts operate simultaneously without bubbles



Continuous Batching

• Continuous batching = ragged batching + ideal dynamic batching
• Attention scores of tokens belonging to 

   prompt 0 and prompt 1 should not be 

   computed together

• Ragged batching because sequence lengths 

    are 'ragged' or uneven, no need for padding

    tokens

Source: https://huggingface.co/blog/continuous_batching



Continuous Batching

• Question remains unsolved: how to make prefill of new requests and decode of 
existing requests operate in parallel?

Continuous batching without chunked prefill 

Source: Streamlining AI Inference Performance and Deployment with NVIDIA TensorRT-LLM Chunked Prefill



Chunked Prefill
• Chunked Prefill
• Elastic Scheduling: split the entire prompt into smaller chunks: more 

scheduling flexibility and enables mixing prefill and decode.
• Decode-Maximal Batching: combine a single prefill chunk with multiple 

decode requests in the same batch, allowing decode operations to 
"piggyback" on the more compute-intensive prefill operations

Source: Streamlining AI Inference Performance and Deployment with NVIDIA TensorRT-LLM Chunked Prefill



Chunked Prefill

• Combined together to acquire a global view of complete prefill

K/V being loaded 2 times 
by late

Mask is a lower triangular matrix

Mask is a trapezoid matrix

Mask is a trapezoid matrix

K/V being loaded 1 time

Attention mask matrices for successive prefill chunks



Continuous Batching

• Continuous batching = ragged batching + dynamic batching

Source: https://huggingface.co/blog/continuous_batching

“normal” mask



Continuous Batching

• Continuous batching = ragged batching + dynamic batching

Source: https://huggingface.co/blog/continuous_batching

“ragged” mask



Continuous Batching

• Continuous batching = ragged batching + dynamic batching

Source: https://huggingface.co/blog/continuous_batching

“ragged” mask



Thanks!


