

LLM Inference Optimization

Autumn 2025

Lecturer: Yuedong (Steven) Xu
Shenzhen Loop Area Institute

yuedongxu@slai.edu.cn

Fudan University
ydxu@fudan.edu.cn

Disclaimer

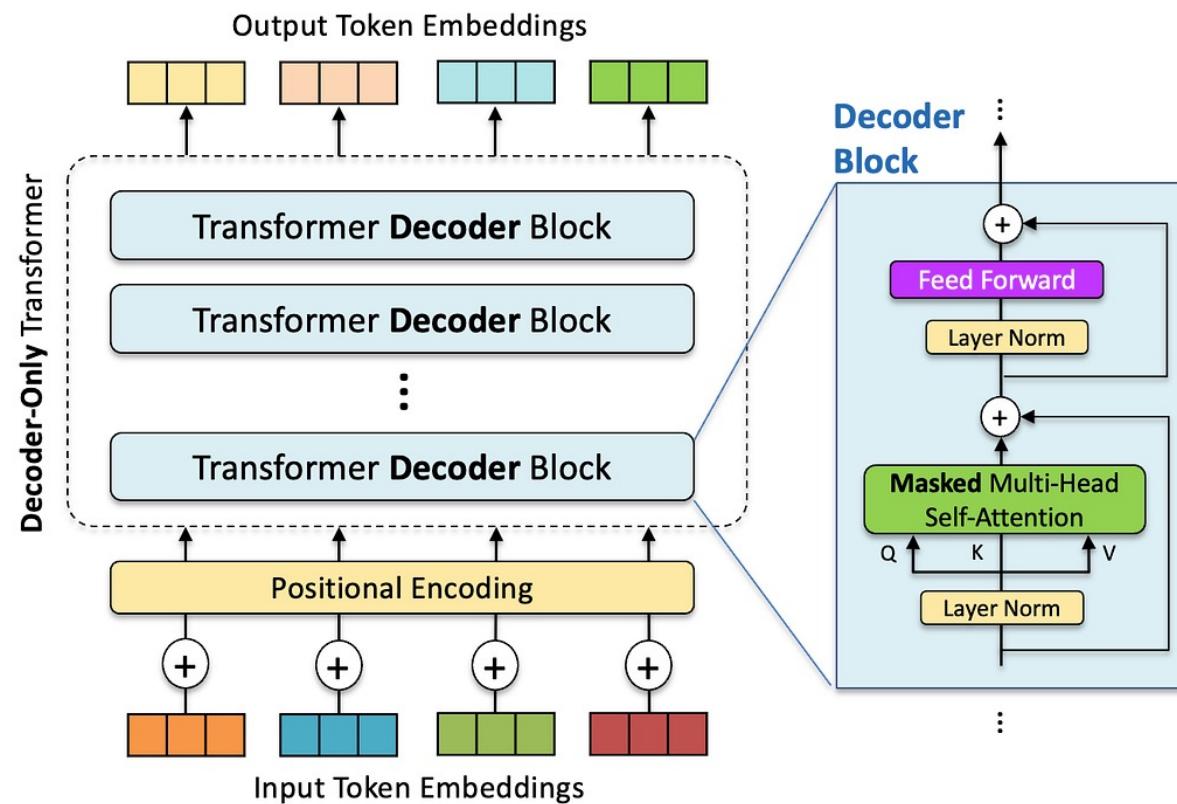
Machine learning systems is a broad and rapidly evolving field. The course material has been developed using a broad spectrum of resources, including research papers, lecture slides, blogposts, research talks, tutorial videos, and other materials shared by the research community. Sometimes external animations and exquisite pictures are heavily reused.

Inference Optimization: Outline

- Overview
- Attention Optimization
- Continuous Batching
- KV Cache Optimization
- Speculative Decoding
- Distributed Serving

Overview

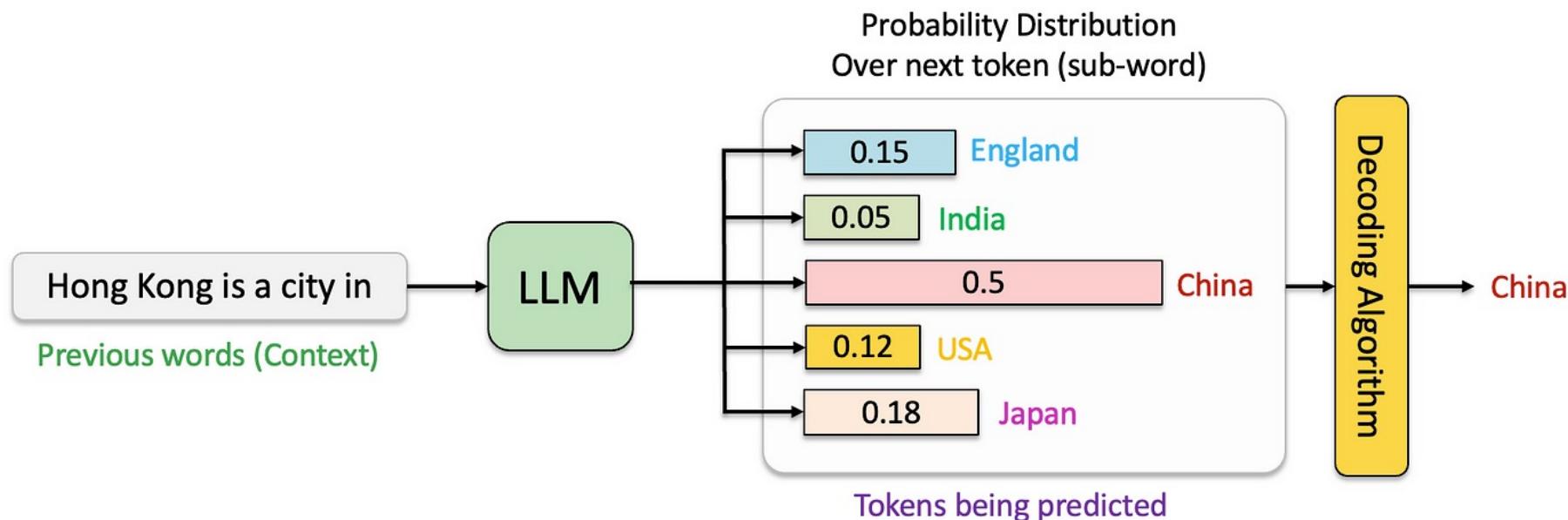
- Decoder-only Transformer



GPT (Generative Pre-trained Transformer) is the first decoder-only Transformer model

Overview

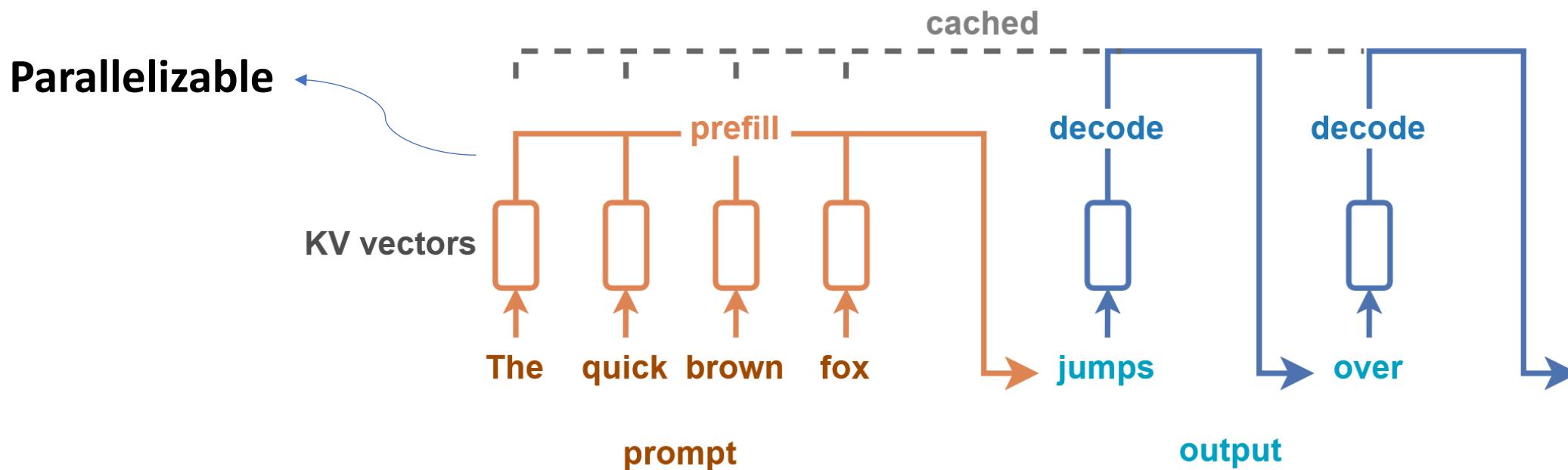
- Decoder-only Transformer
 - Generating a probabilistic distribution over possible next token, and a decoding algorithm is employed to select the actual output token



Next-token prediction, i.e. generating output tokens one by one

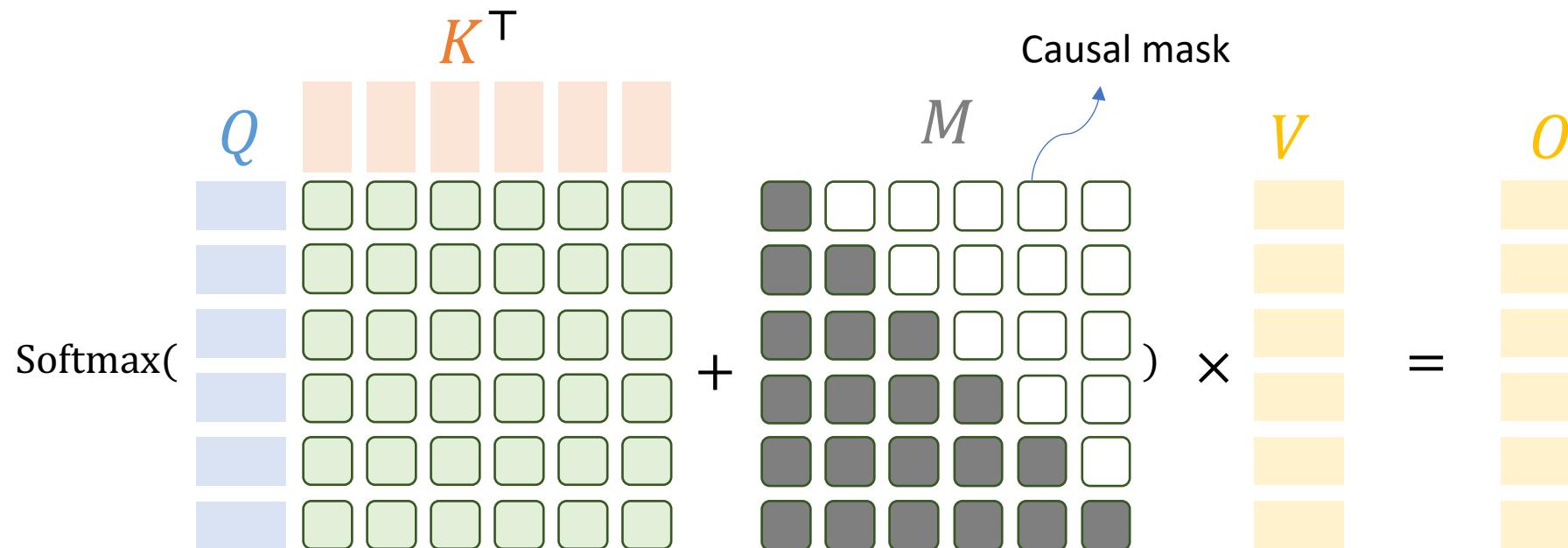
Overview

- Autoregressive Decoding
 - “Prefill” refers to the **initial parallel computation phase** where the model processes the entire input prompt for subsequent token-by-token generation



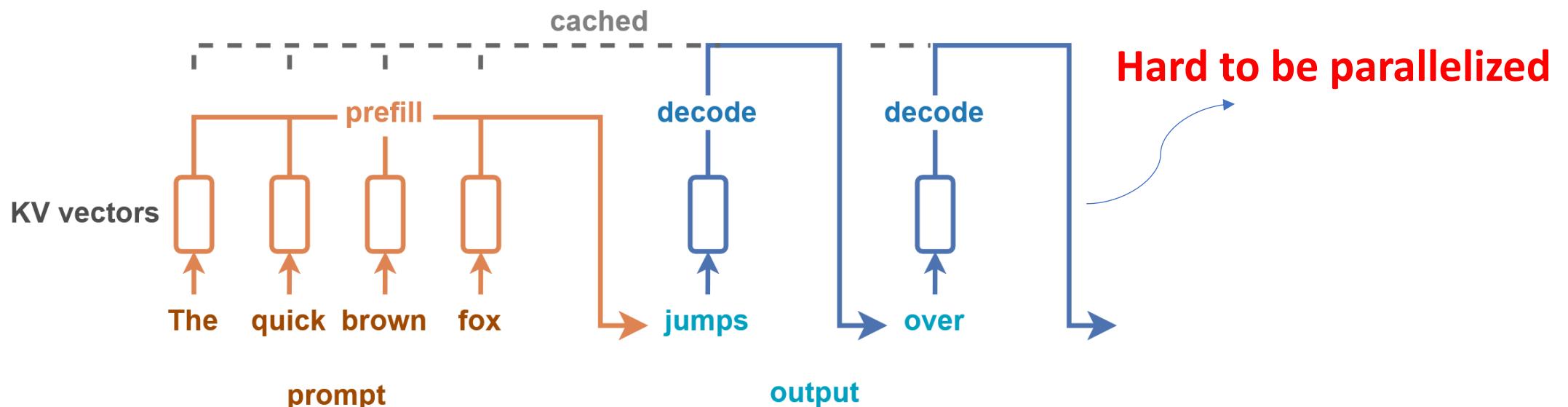
Overview

- Prefill: highly parallelizable
 - A small batch size can “saturate” GPU computation
 - Parallelization over batch size, header size, sequence length and thread-block tiling



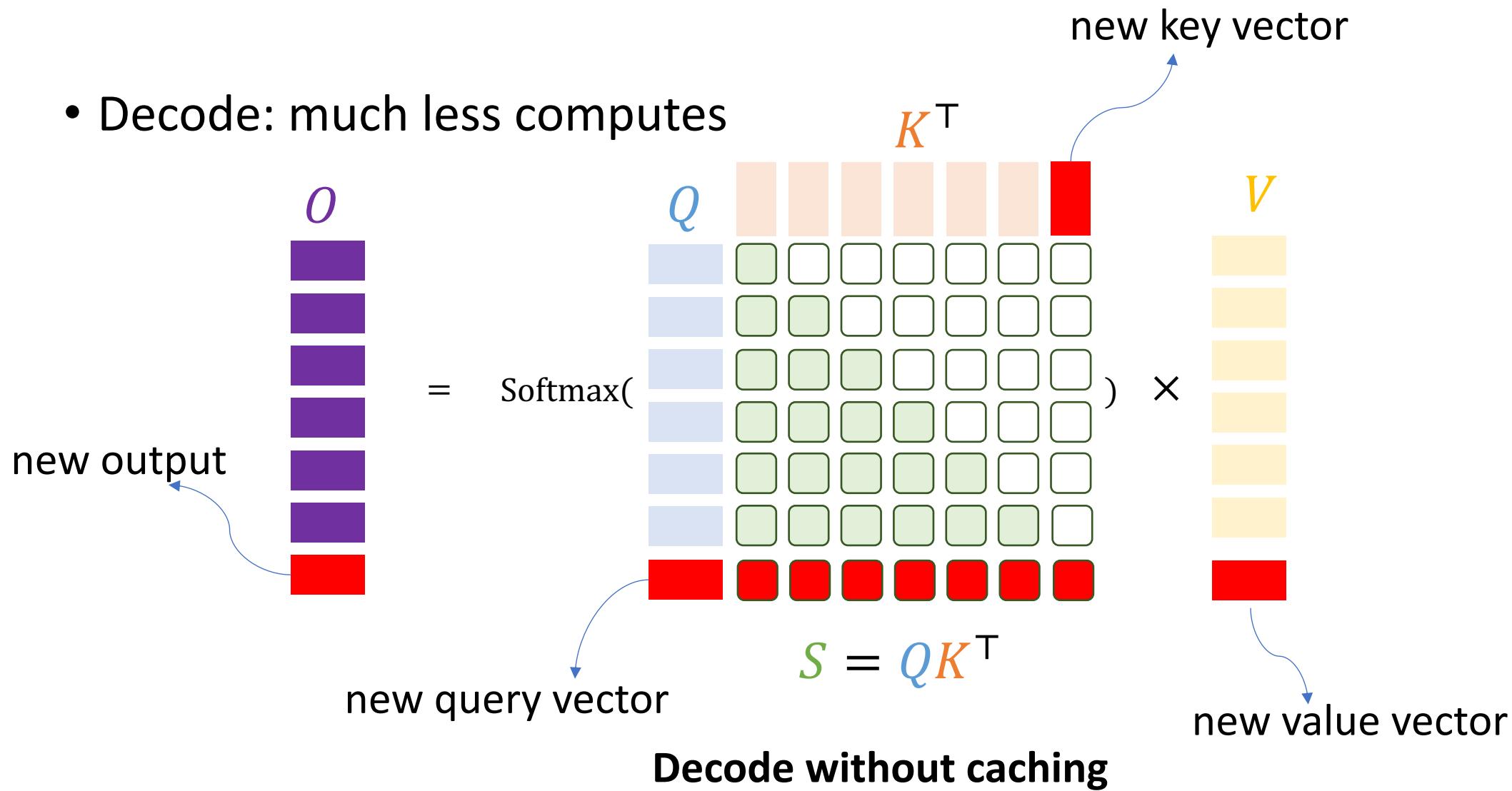
Overview

- Autoregressive Decoding
 - “Decode” refers to the **iterative process of generating output tokens** one at a time, where each new token is predicted based on the input prompt and all previously generated tokens



Overview

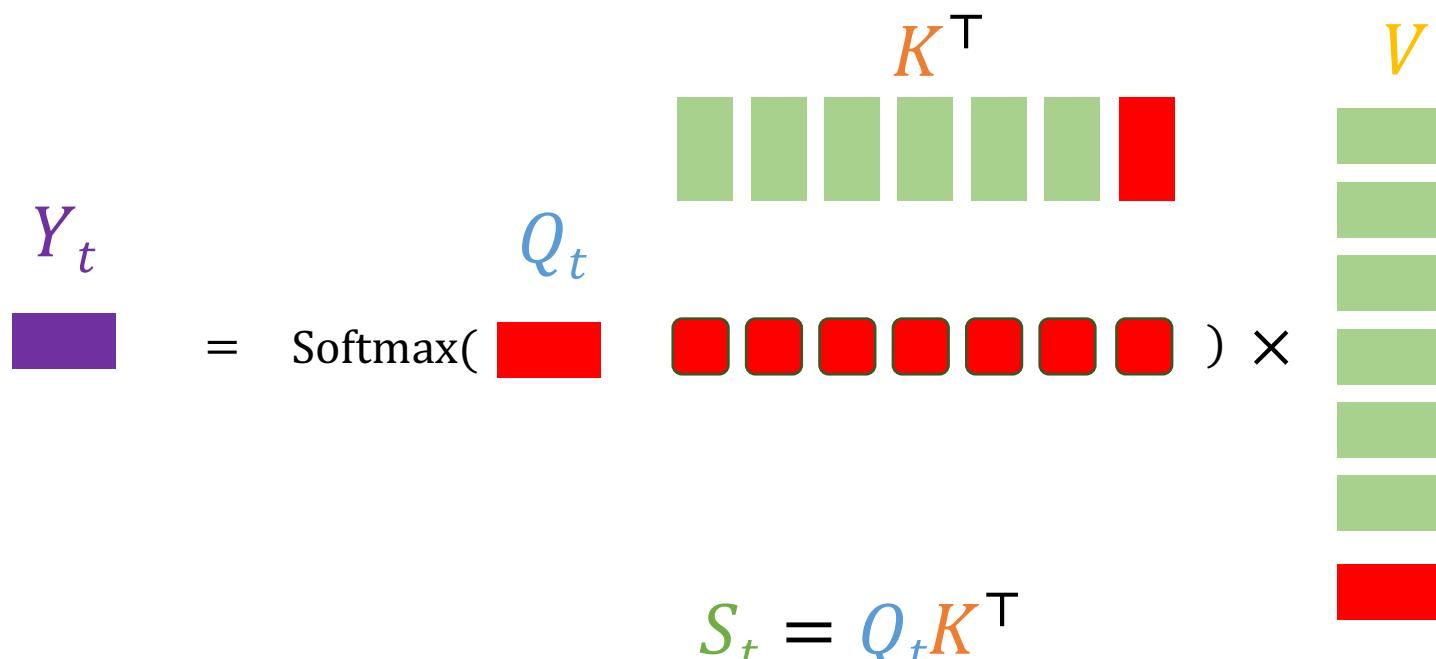
- Decode: much less computes



Overview

 Newly computed
 Could be cached

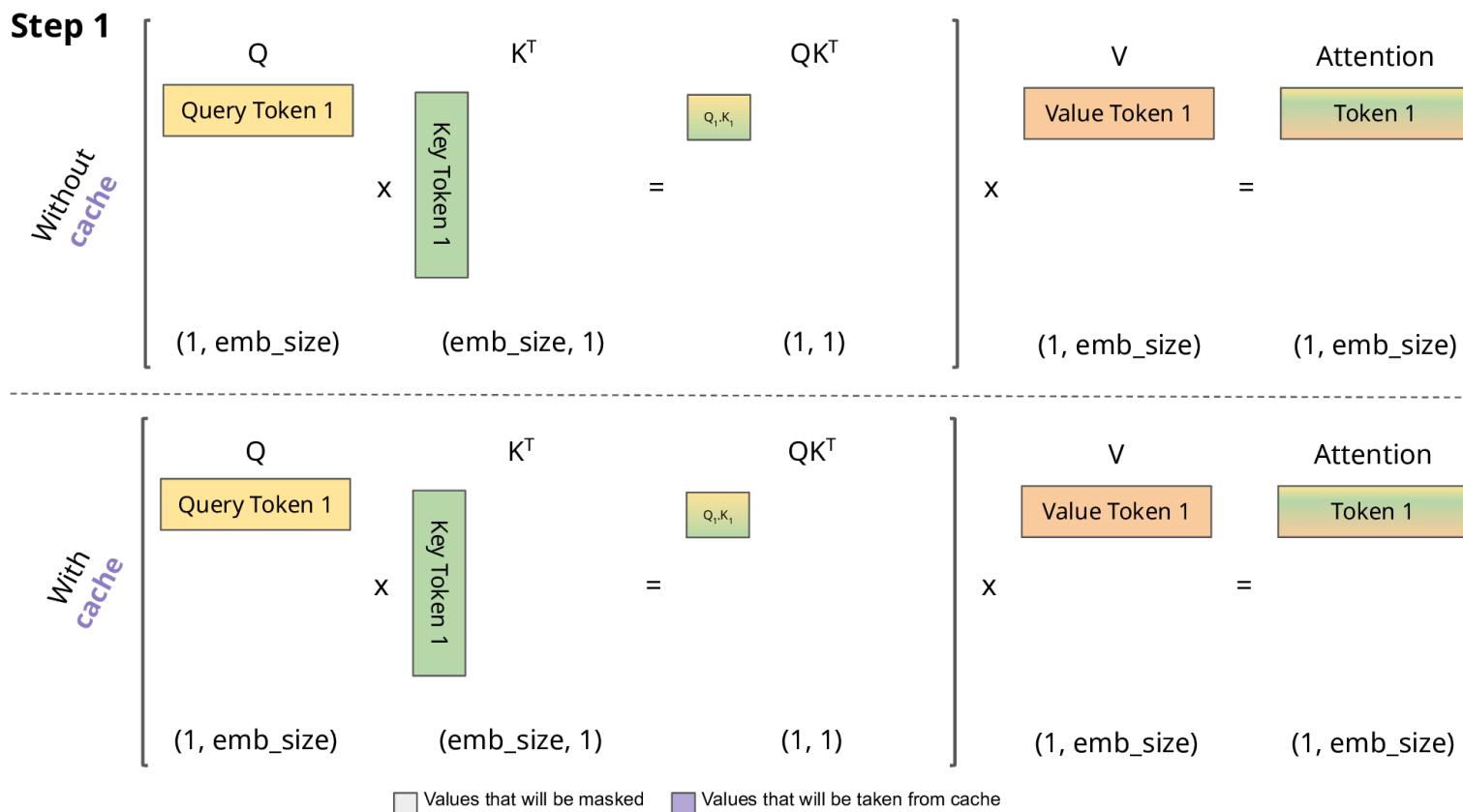
- Decode: much less computes
 - Why caching Key and Value, other than Query



Decode Compute output token one by one

Overview

- An animation



Overview

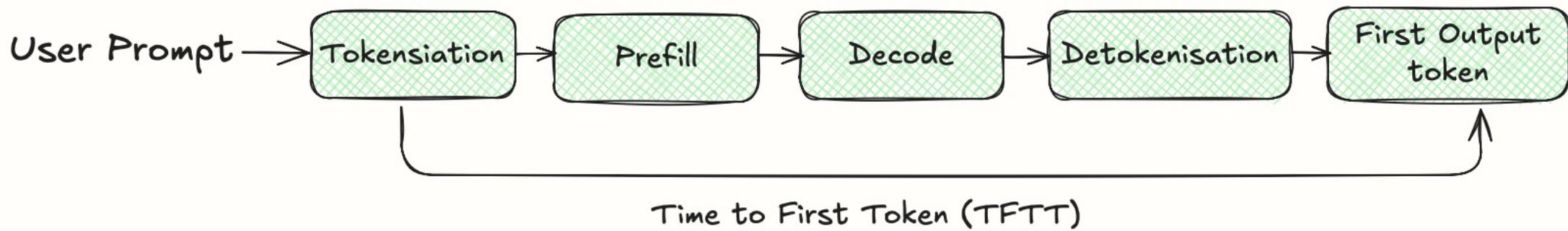
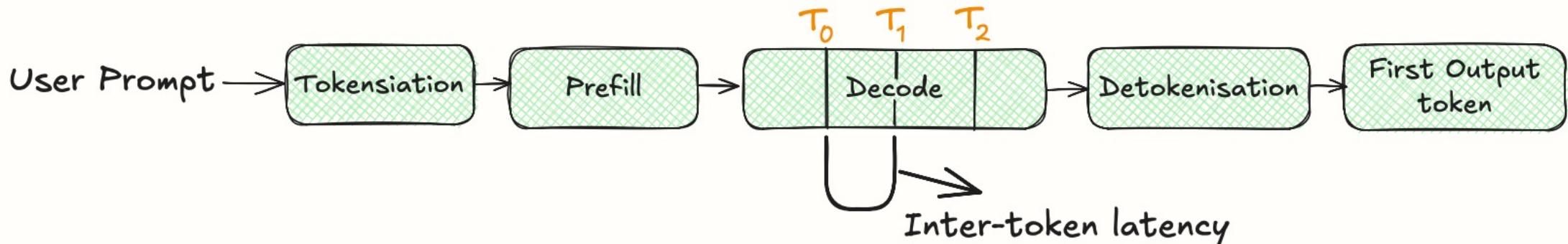
- Why Caching KV?
 - Reducing redundant computations for KEYs and VALUEs
 - Increasing memory consumption

2	\times	2	\times	8096	\times	80	\times	64	\times	64
K/V	Float16	Sequence length		# of layers		# of heads		dimension		

~10.6 GB!

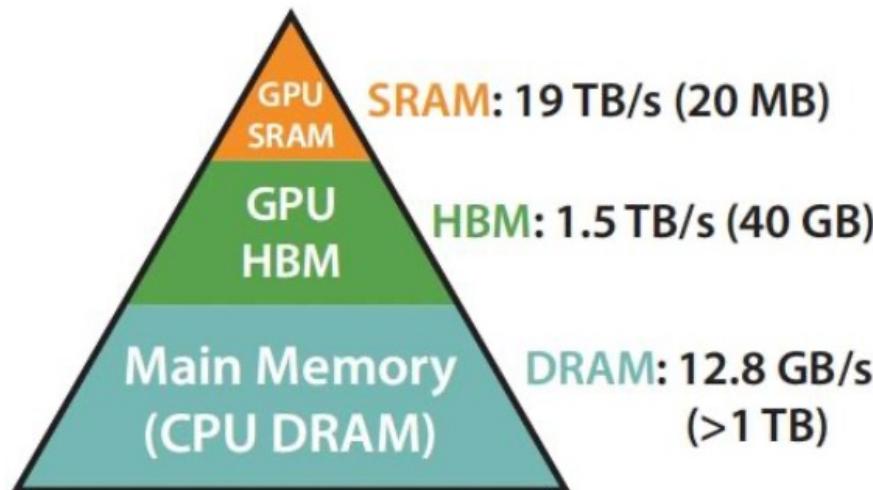
Overview

- Autoregressive Decoding
 - Token generation core metrics: **TTFT** and **TPOT** (time per output token)



Overview

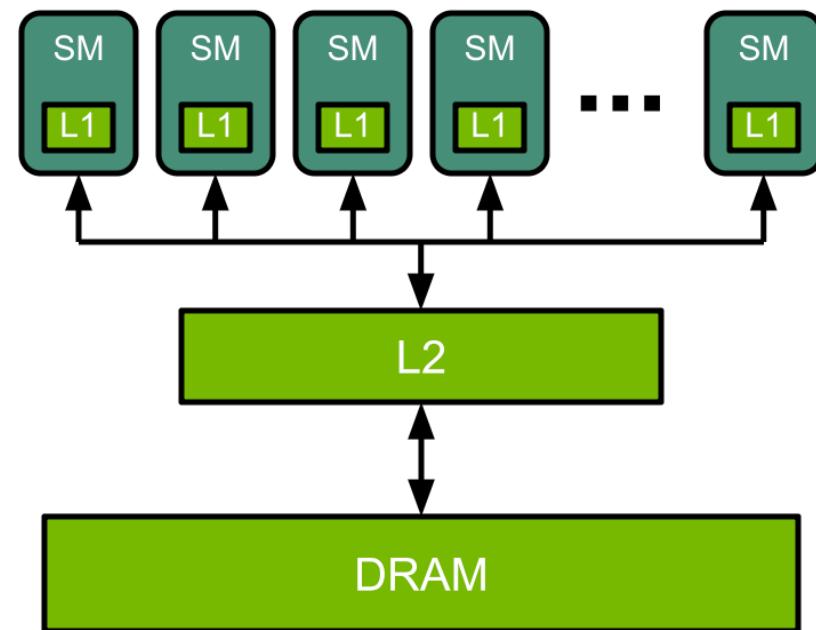
- Hierarchical GPU Memory
 - I/O throughput versus memory size



**Memory Hierarchy with
Bandwidth & Memory Size**

A macroscopic view of I/O tradeoff (V100)

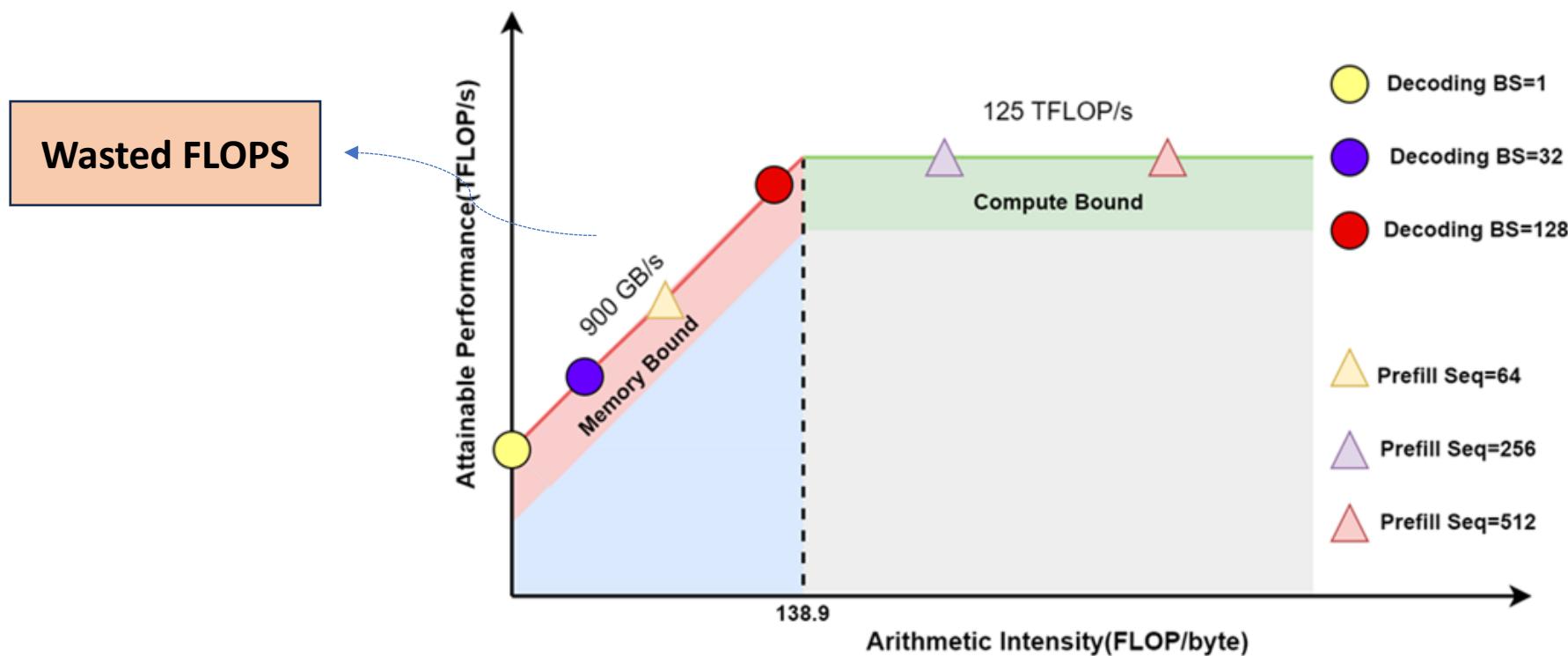
Insufficient to store data at SRAM: load from HBM to SRAM and write back to HBM



L1 instruction cache: 192KB per SM * 108 SM ~20MB
Data flow: DRAM/L2 Cache to/from L1 Cache, much slower than computing

Overview

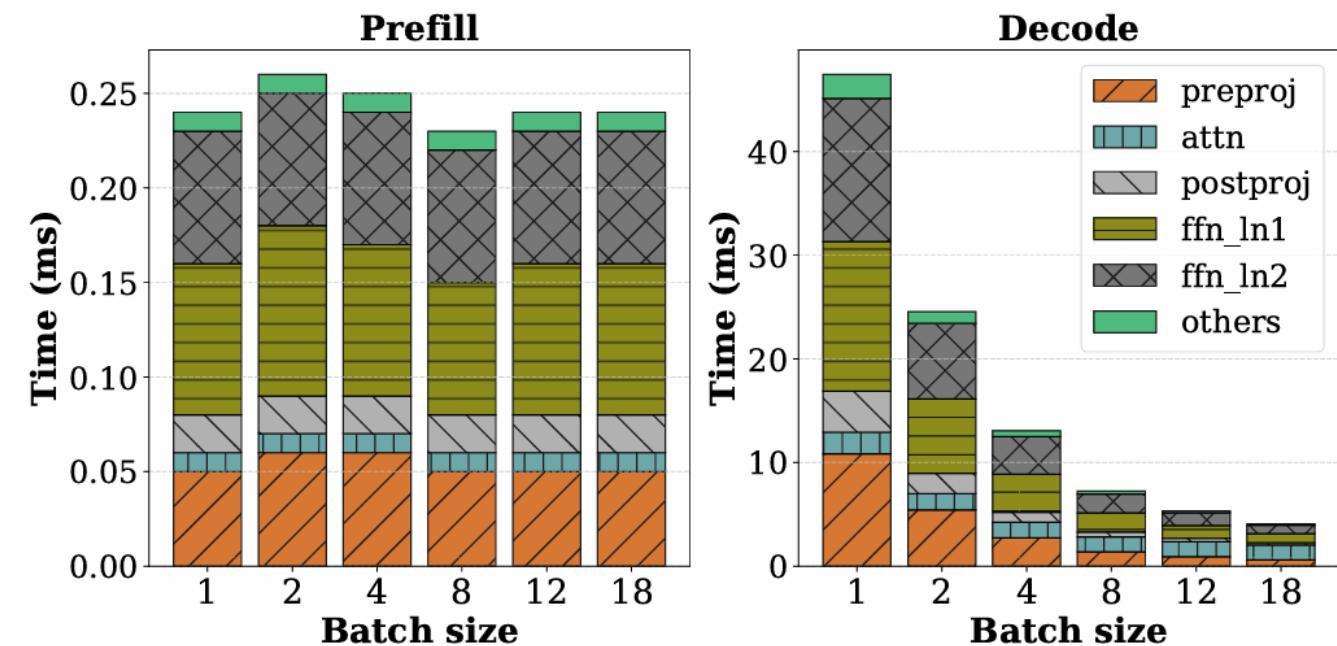
- Prefill and Decode
 - Prefill: Compute intensive with GEMM, Decode: memory I/O intensive with GEMV



Roofline model of NVIDIA V100 GPU

Overview

- Prefill and Decode
 - Prefill: Compute intensive, Decode: memory I/O intensive
 - Prefill saturates GPU compute even at batch size of 1
 - Decode under-utilizes GPU compute and costs as much as 200 times prefill for bs=1



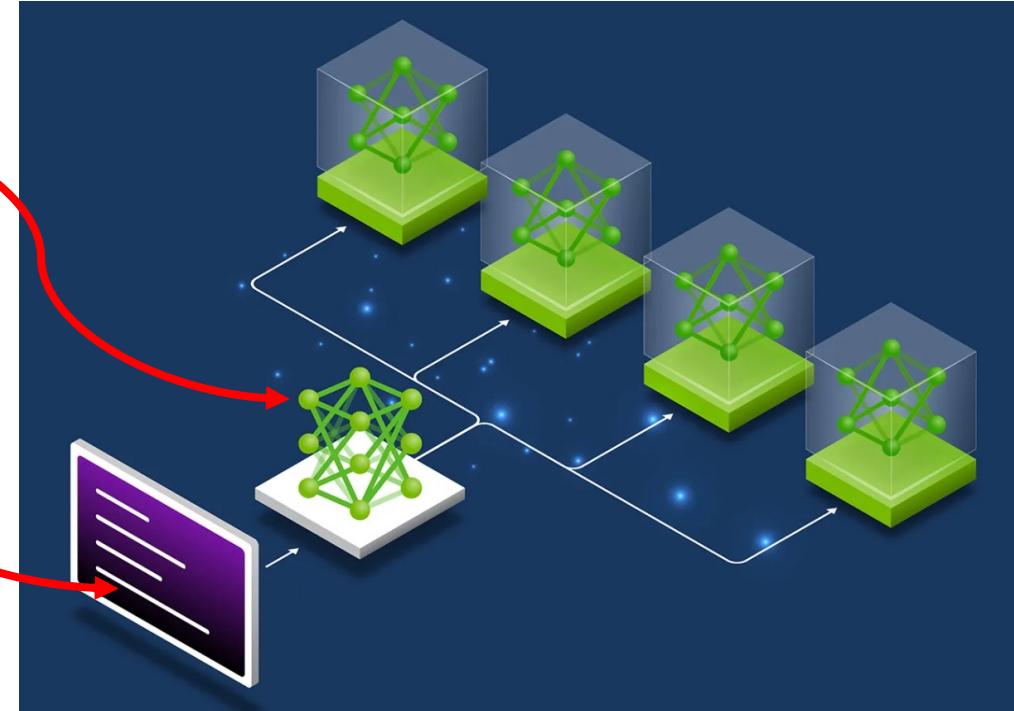
Per-token prefill and decode time with different batch sizes
(sequence length = **1024**) for LLaMa-13B on A6000 GPU

Overview

- Very Large-scale LLM Inference

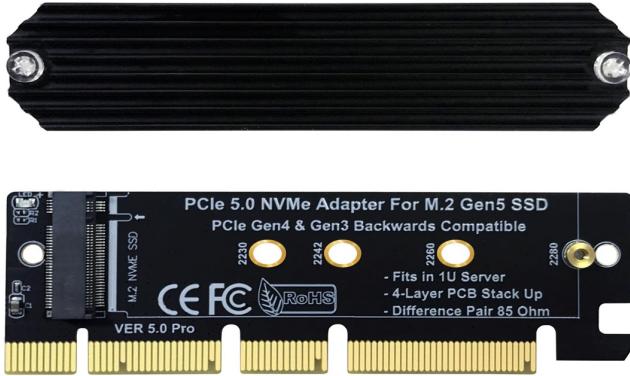
Full model size with 256 experts

Long context and high
request loads

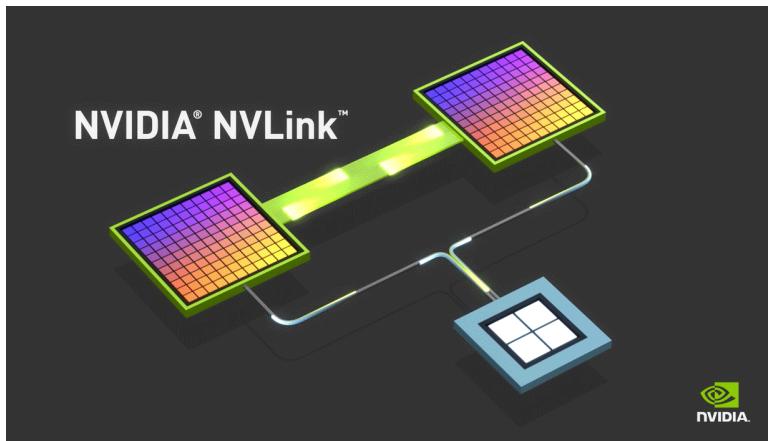


Overview

- Versatile communication medium
 - Transmission delay emerges



PCIe Link
e.g. CPU – GPU with
up to 128GB/s bandwidth



NVLink
e.g. GPU – GPU
in total 1.8TB/s bandwidth

RoCE
e.g. Machine – Machine
up to 800 Gbps

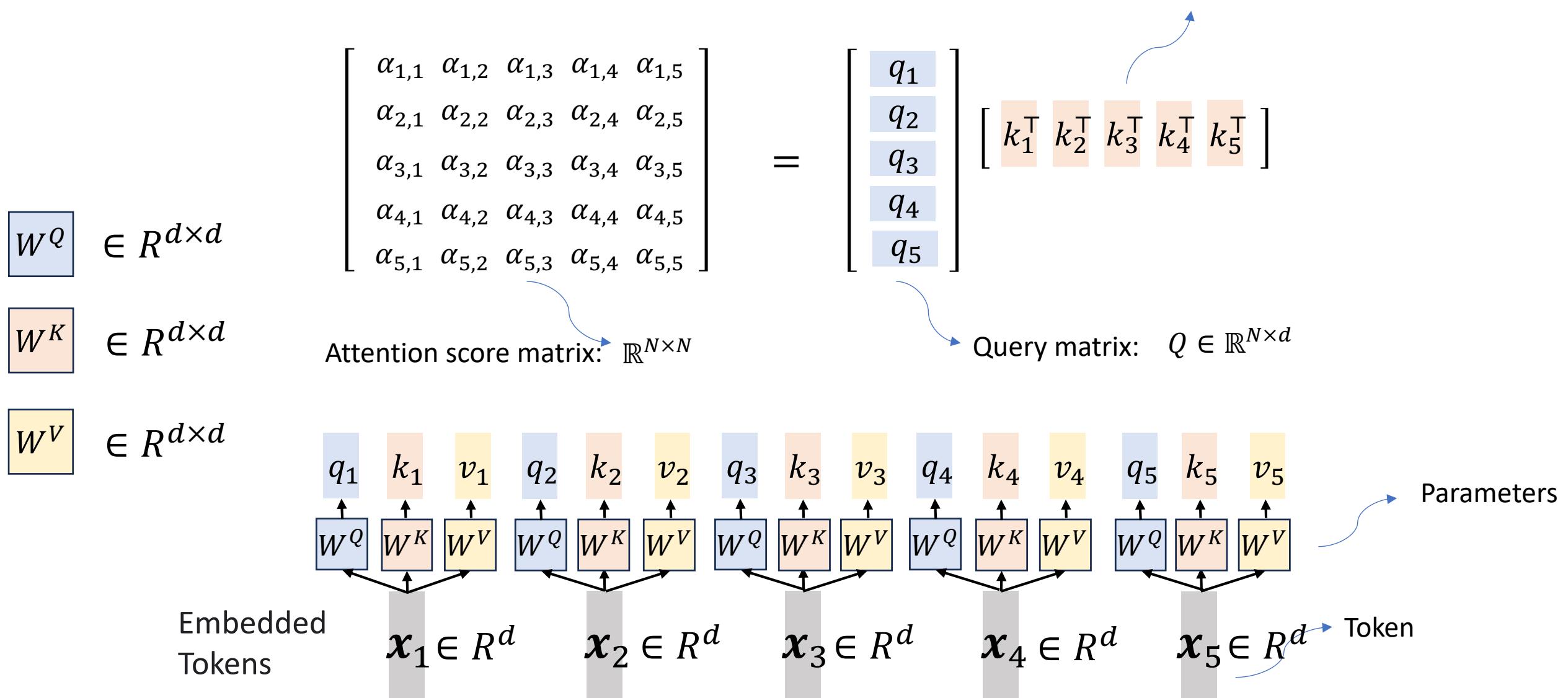
Overview

- Challenges of LLM Inference
 - New token generation paradigm
 - **Prefill and Decode**
 - Hierarchical memory
 - **Fast** I/O small size versus **slow** I/O large size
 - Heterogeneous bandwidth
 - **High** intra-machine bandwidth versus **low** inter-machine bandwidth
- To emphasize
 - many optimization methods, e.g. **attention optimization** can be employed for model **training** (e.g. sparse attention, linear attention, flash attention)

Inference Optimization: Outline

- Overview
- Attention Optimization
 - **Sparse Attention**
 - Linear Attention
 - Flash Attention
 - Continuous Batching
- Continuous Batching
- KV Cache Optimization
- Speculative Decoding
- Distributed Serving

Attention Optimization



Attention Optimization

- Real-world operations
 - Transferring both matrices from global memory to shared memory for computing, and write the result back to global memory progressively

- Complexity

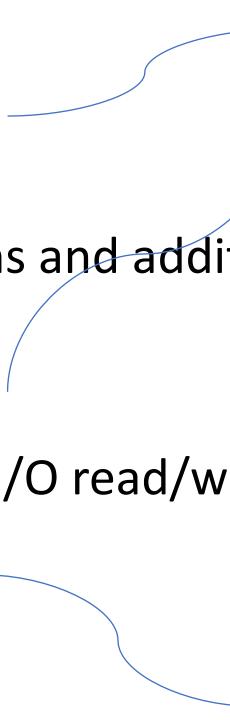
- Computation: $O(N^2d)$

- Considering multiplications and additions → computing time $T_C = \frac{2N^2d}{C}$

- Communication: $O(N^2)$

- Considering bidirectional I/O read/write → communication time $T_{I/O} = \frac{2*(N^2+2Nd)}{B}$

- Global storage: $O(N^2)$



(partially) overlapped

GPT3 with 10K tokens in FP16:
200MB per head per layer

Attention Optimization

- Real-world operations
 - Transferring both matrices from global memory to shared memory for

Computation, I/O and storage should all be optimized!

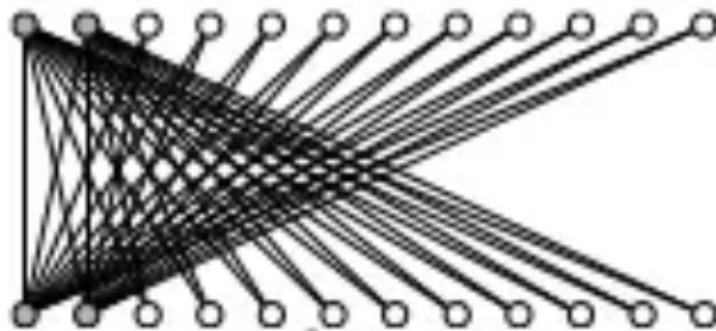
- Communication: $O(N^2)$
 - Considering bidirectional I/O read/write → communication time $T_{I/O} = \frac{2*(N^2+2Nd)}{B}$
- Global storage: $O(N^2)$

Sparse Attention

- Sparse attention
 - reduce computational and memory cost by only computing attention for a **subset of token pairs** instead of all pairs
 - evidence from machine learning community (e.g. Rewon Child, 2019)
- Sparse attention patterns
 - Position-based sparse attention: **rule-based or heuristic methods** to decide the positions where the interactions of these pair-wise tokens are important
 - Content-based sparse attention: tokens selectively attending only to other tokens that are **relevant based on their representations**

Position-based Sparse Attention

- Global attention
 - global nodes act as an information hub, allowing them to attend to every other node in the sequence



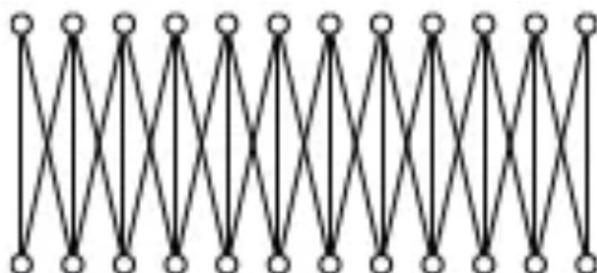
A bipartite graph illustration of QK^T computation

	Key							
	k_1	k_2	k_3	k_4	k_5	k_6	k_7	k_8
q_1								
q_2								
q_3								
q_4								
q_5								
q_6								
q_7								
q_8								

Not stored in memory

Position-based Sparse Attention

- Band attention
 - often termed “local attention” or “sliding window attention”, in which a node’s attentions are confined to neighboring nodes in a local window

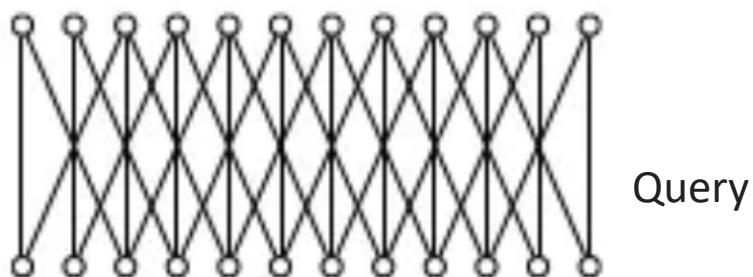


	Key							
	k_1	k_2	k_3	k_4	k_5	k_6	k_7	k_8
q_1								
q_2								
q_3								
q_4								
q_5								
q_6								
q_7								
q_8								

- Reducing complexity from $O(N^2)$ to $O(kN)$
- Limited receptive field (cannot capture long-range dependencies)
- Sacrificing context modeling ability: slow information propagation

Position-based Sparse Attention

- Dilated attention
 - using a dilated window with gaps of dilation equal to or greater than 1

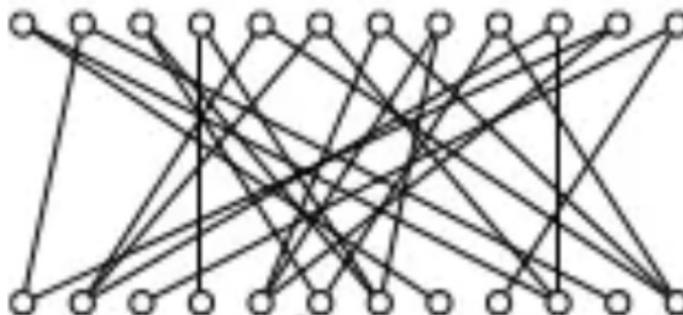
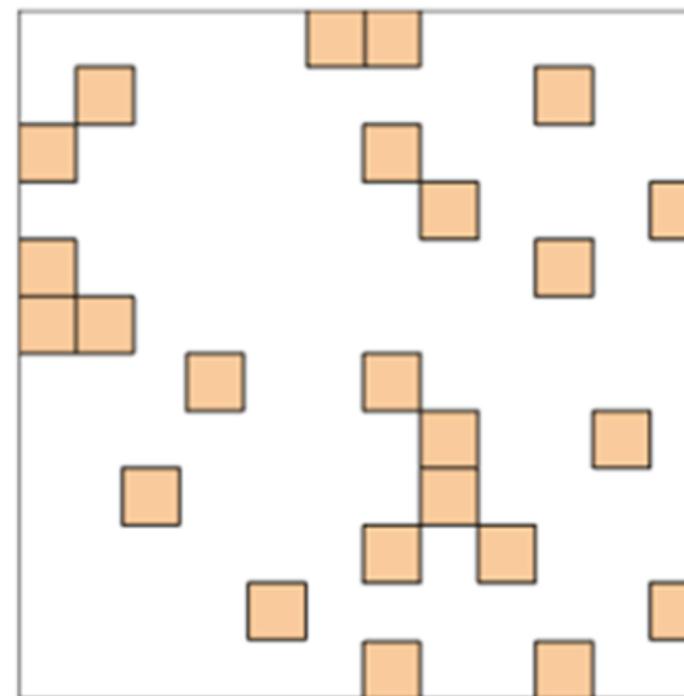


	Key							
	k_1	k_2	k_3	k_4	k_5	k_6	k_7	k_8
q_1	Light Blue				Light Blue		Light Blue	
q_2		Light Blue			Light Blue			Light Blue
q_3			Light Blue			Light Blue		
q_4	Light Blue			Light Blue			Light Blue	
q_5		Light Blue			Light Blue			Light Blue
q_6			Light Blue			Light Blue		
q_7	Light Blue			Light Blue			Light Blue	
q_8		Light Blue			Light Blue			Light Blue

- Reducing complexity from $O(N^2)$ to $O(kN)$
- Missing fine-grained, short-range dependencies (failure to capture important neighbors in those gaps)

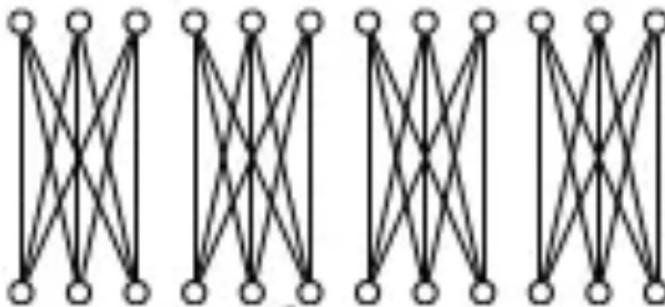
Position-based Sparse Attention

- Random attention
 - each query randomly samples a few keys for better capturing non-local interactions



Position-based Sparse Attention

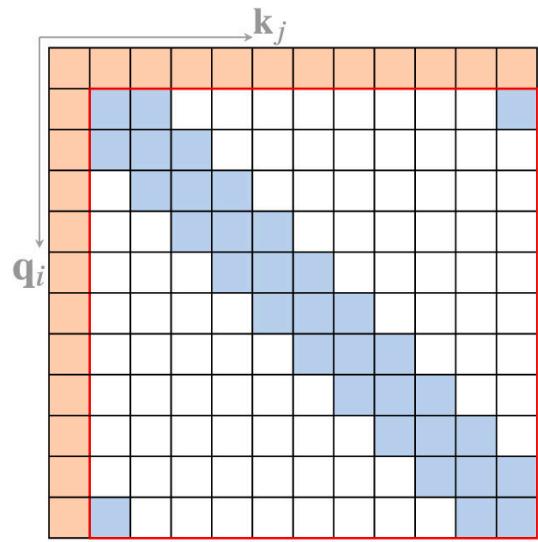
- Block attention
 - input sequence segmented into multiple non-intersection query blocks and each block assigned a local memory block



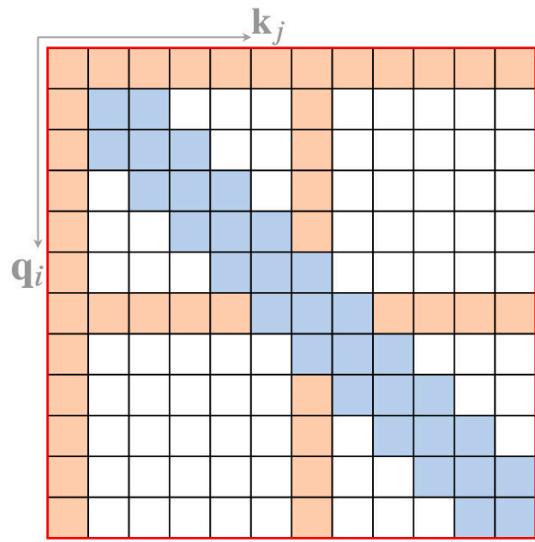
	Key							
	k_1	k_2	k_3	k_4	k_5	k_6	k_7	k_8
q_1								
q_2								
q_3								
q_4								
q_5								
q_6								
q_7								
q_8								

Position-based Sparse Attention

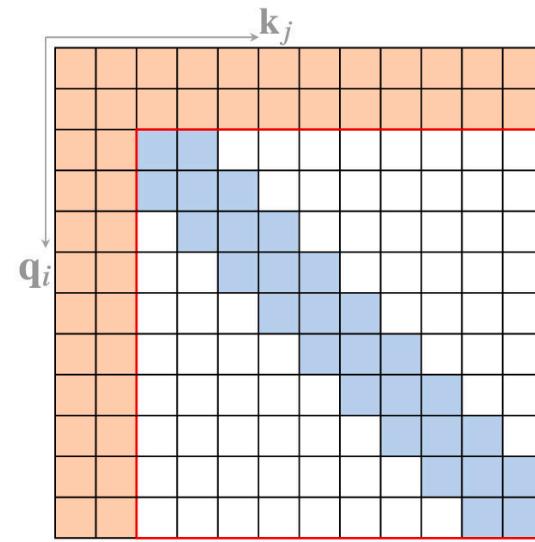
- COMPOUND attention



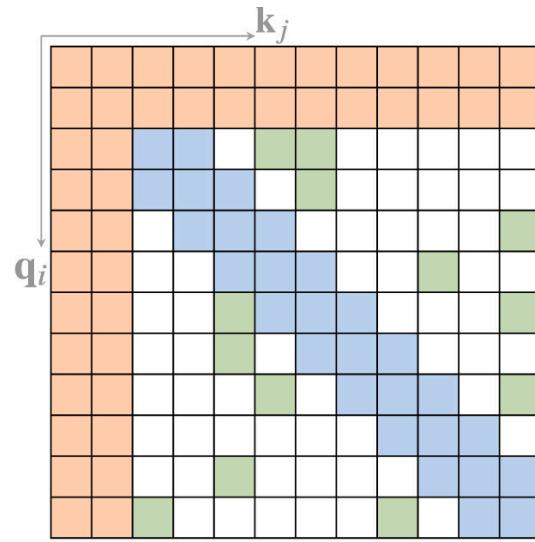
(a) Star-Transformer



(b) Longformer



(c) ETC

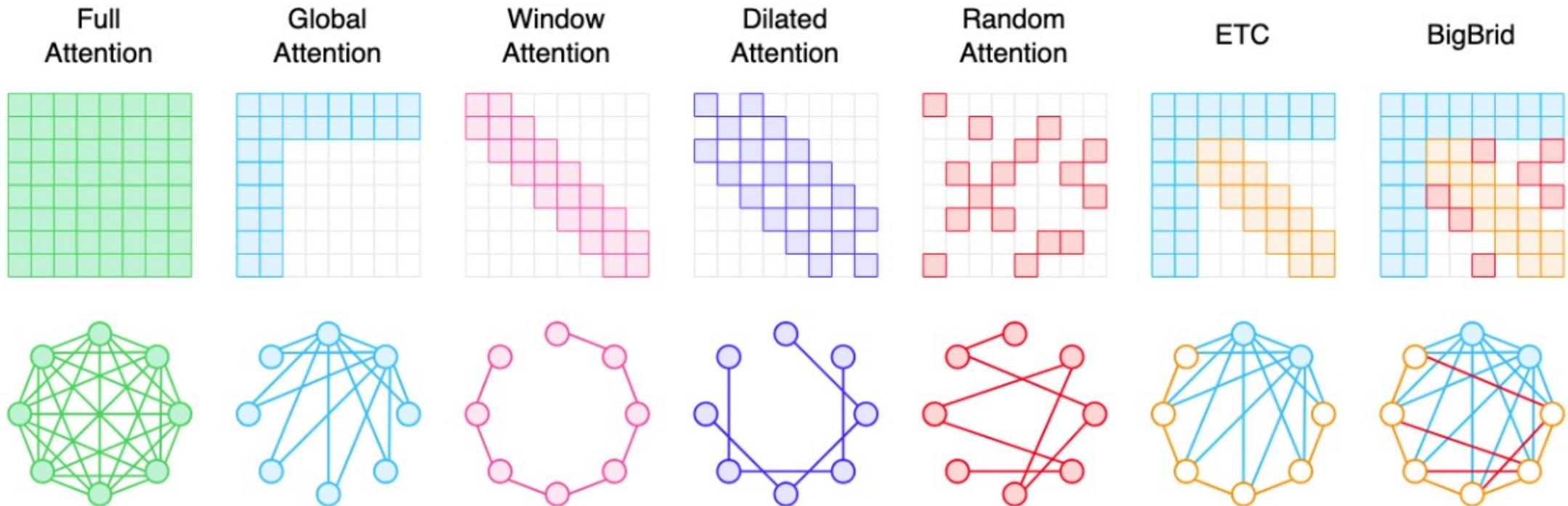


(d) BigBird

- BigBird : local + global + random yields dense-equivalent performance
- Increased implementation complexity, more hyperparameters to tune and potential redundancy

Position-based Sparse Attention

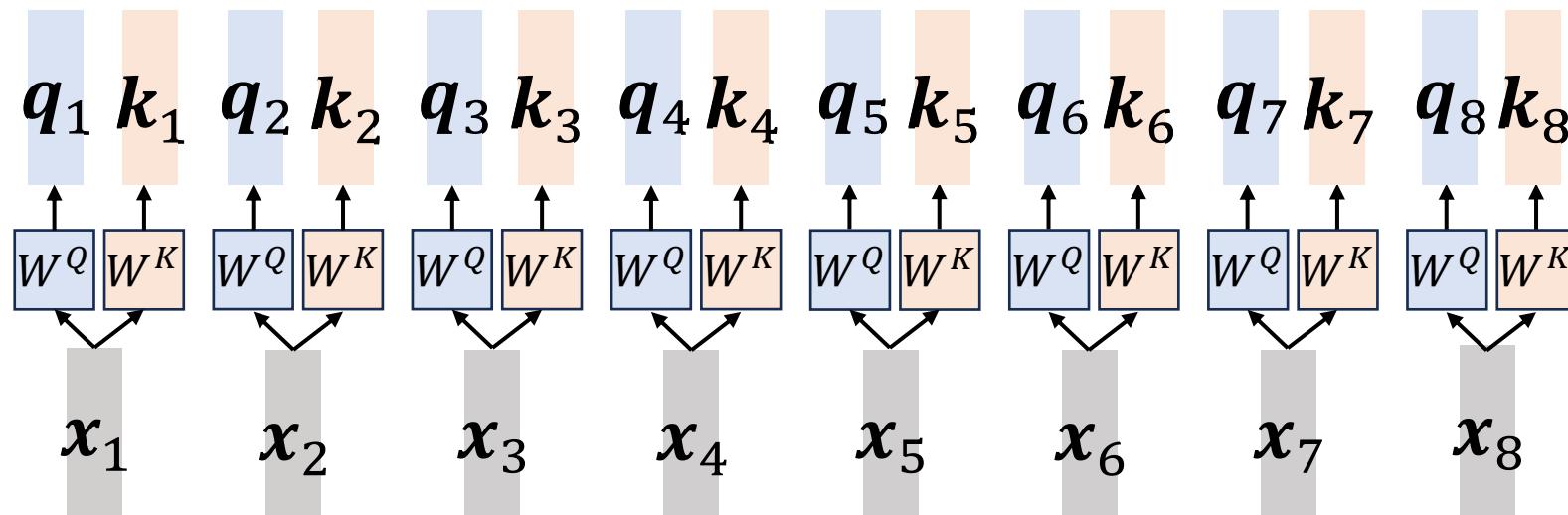
- Representative sparse attentions in a nutshell



Content-based Sparse Attention

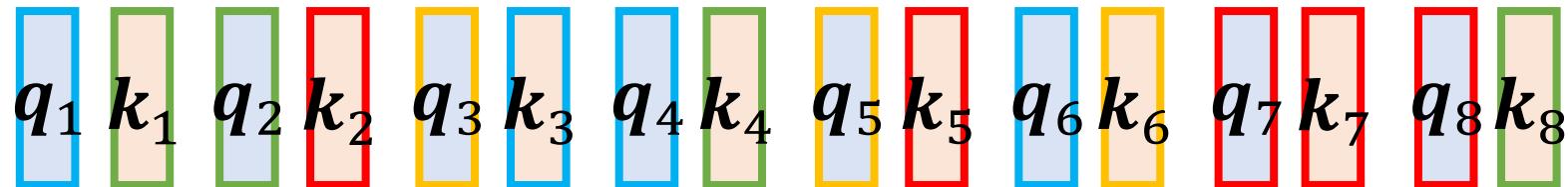
- Routing transformer

Clustering (approximate & fast)

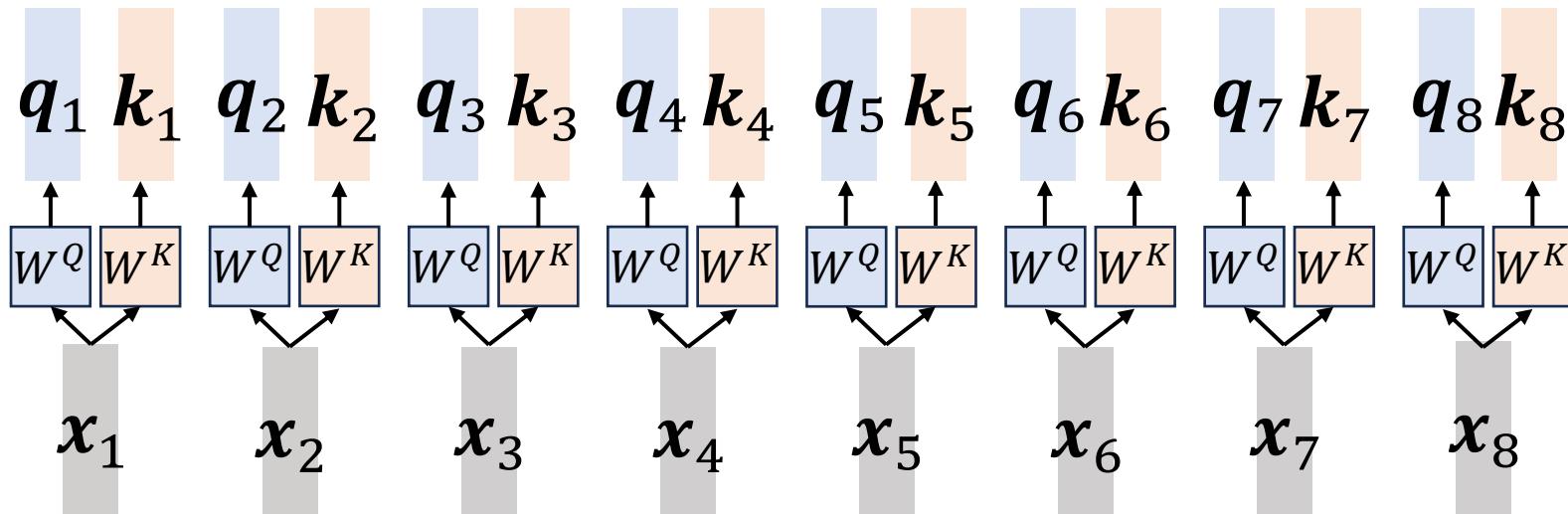


Content-based Sparse Attention

- Routing transformer



K-means Clustering (approximate & fast)



Content-based Sparse Attention

- Clusters

- $\{q1, q4, q6, k1, k3\}$
- $\{q2, k1, k4, k8\}$
- $\{q3, q5, k6\}$
- $\{q7, q8, k2, k5, k7\}$

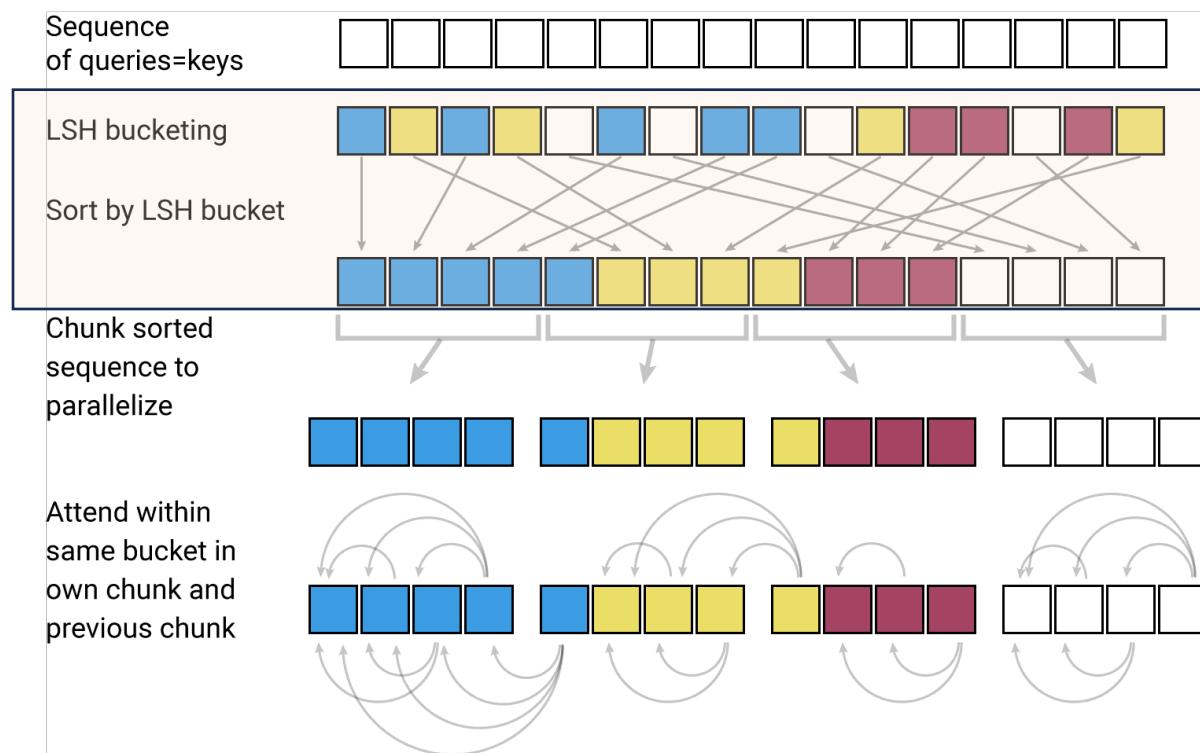
	k_1	k_2	k_3	k_4	k_5	k_6	k_7	k_8
q_1	Blue		Blue					
q_2	Green			Green				Green
q_3						Yellow		
q_4	Blue		Blue					
q_5						Yellow		
q_6	Blue		Blue					
q_7		Red			Red		Red	
q_8		Red			Red		Red	

Content-based Sparse Attention

- Routing transformer: summary
 - attention scores in scaled dot-product rely on the similarity between Q and K
→ approximated by grouping them in a shared projection space
 - needs to be **double checked** by our students manually
 - each query only needs to attend to keys within its assigned cluster (typically \sqrt{n} in size), reducing complexity to $O(n\sqrt{n})$ while preserving relevant long-range dependencies
 - cluster centroids are learned during training, allowing the model to adaptively group based on content

Content-based Sparse Attention

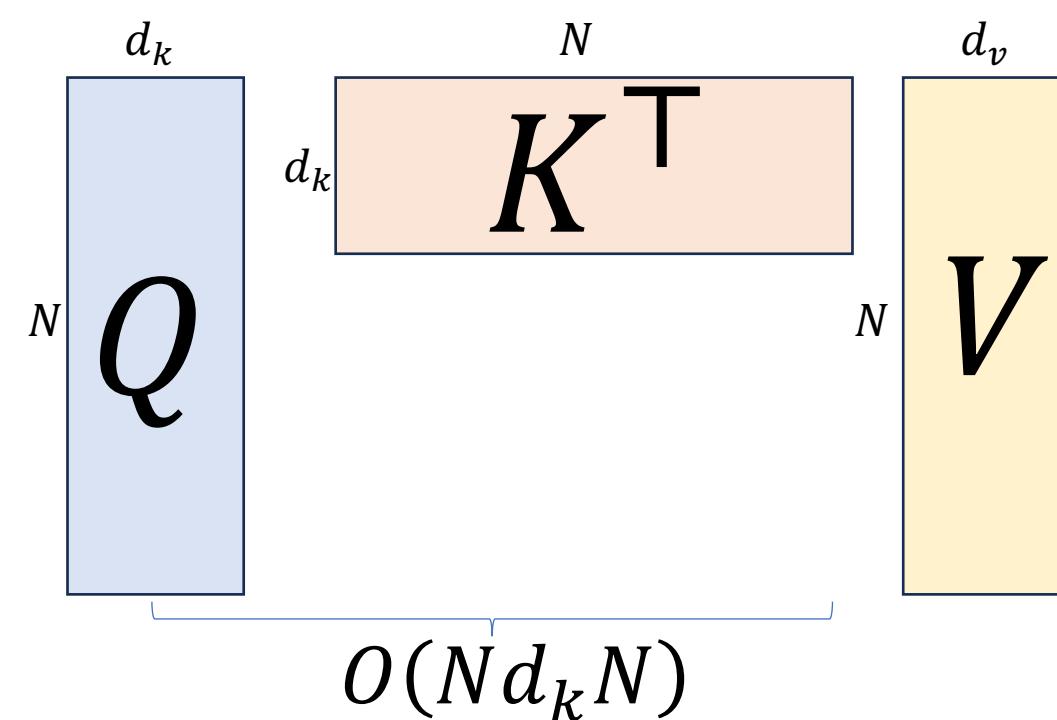
- Reformer: using locality-sensitive hashing (LSH) instead of dot-product attention



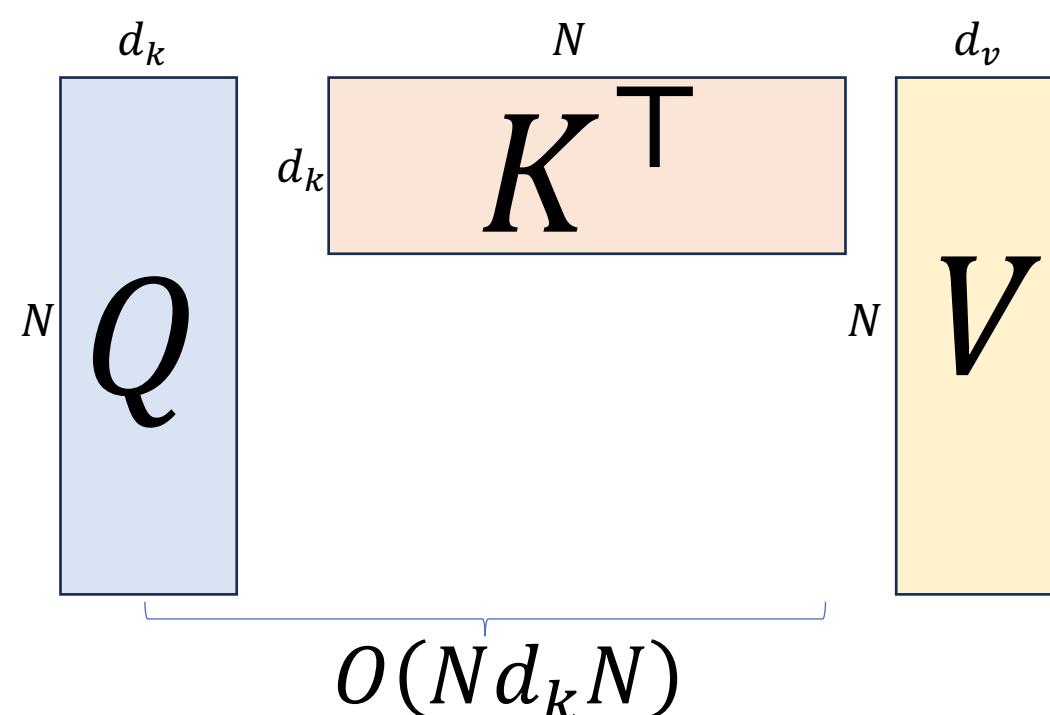
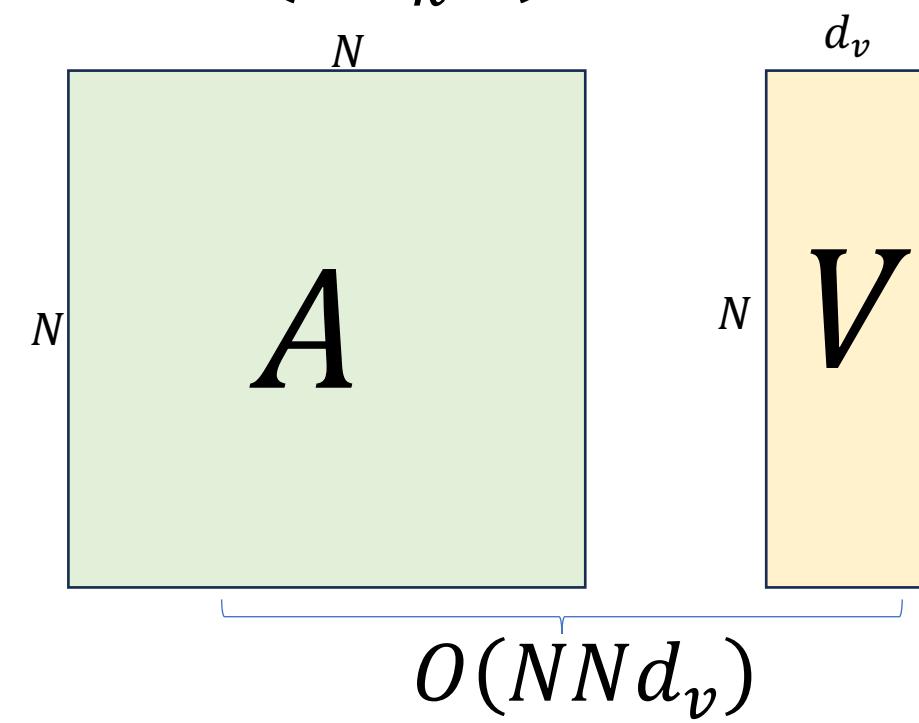
- Using **locality-sensitive hashing (LSH)** to select key-value pairs for each query
- Using Reversible Transformer to reduce memory usage during training
- Similar items (queries and keys) falling in the same bucket with high probability
- Processing sequences of length **64K tokens** or more efficiently

Inference Optimization: Outline

- Overview
- Attention Optimization
 - Sparse Attention
 - **Linear Attention**
 - Flash Attention
- Continuous Batching
- KV Cache Optimization
- Speculative Decoding
- Distributed Serving

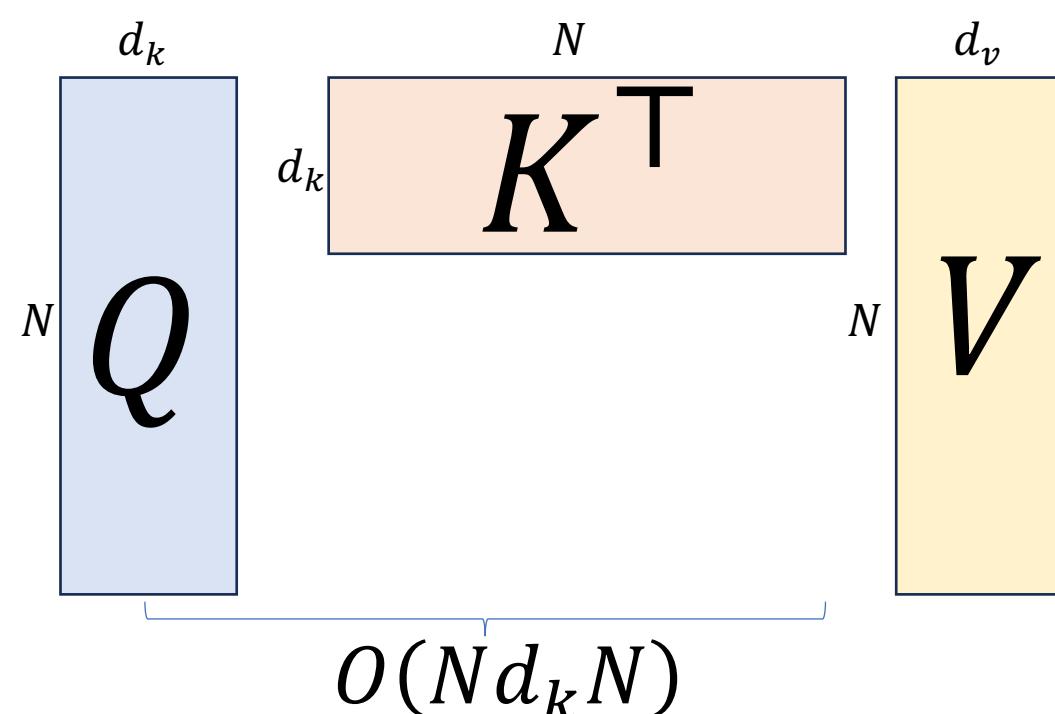
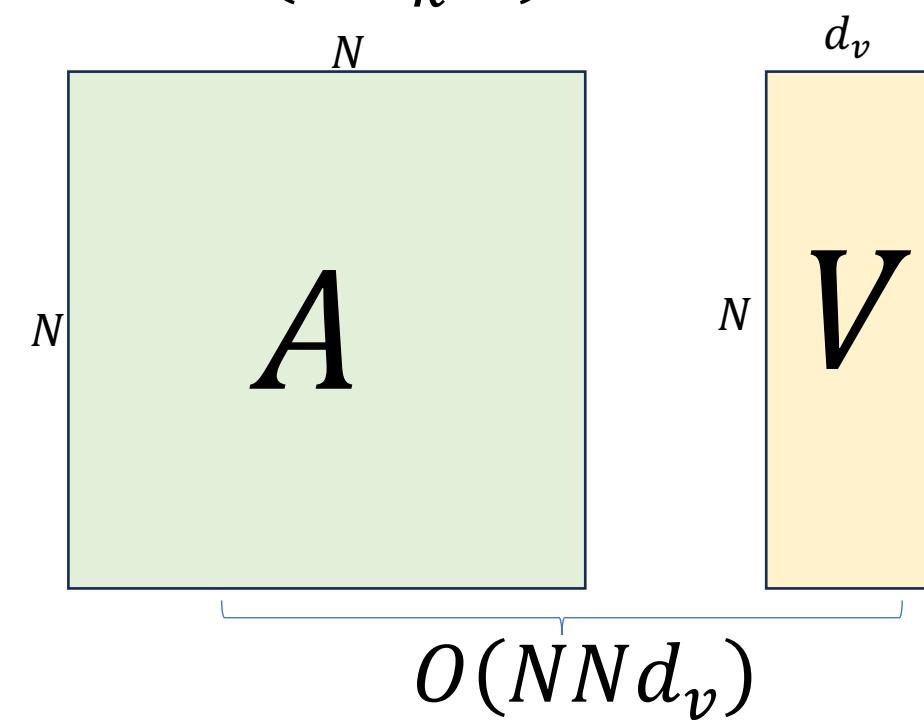


“optimal parenthesization” via dynamic programming



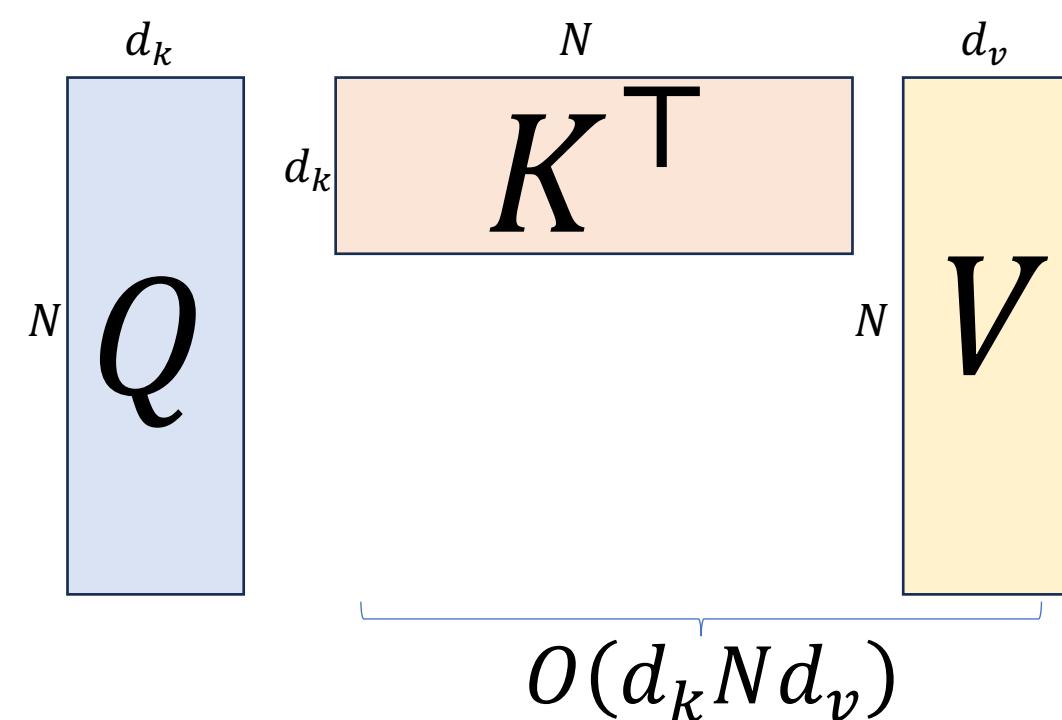
Original

$$O(N^2(d_v + d_k))$$



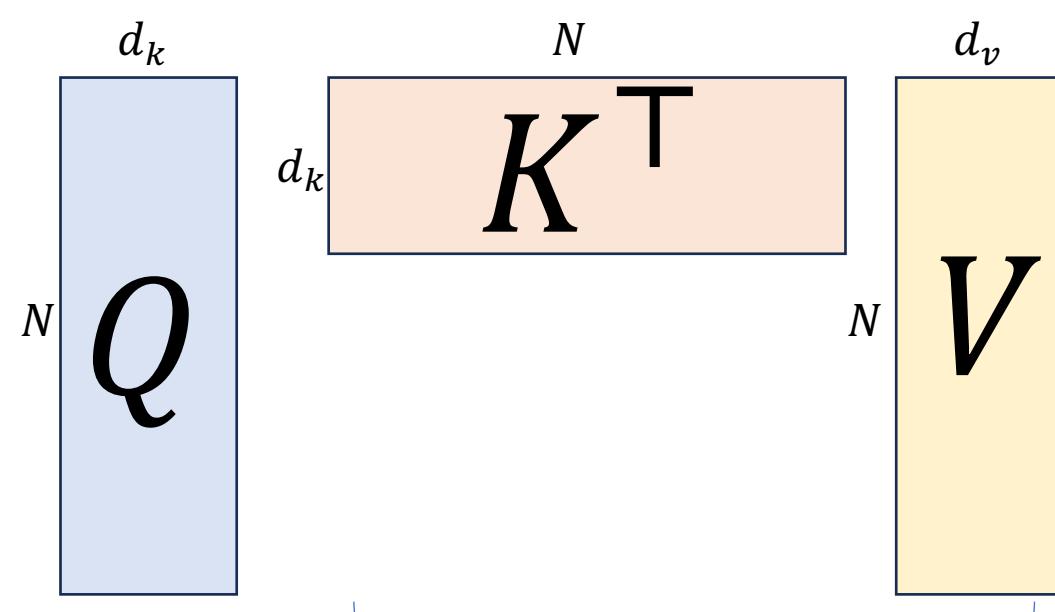
Original

$$O(N^2(d_v + d_k))$$



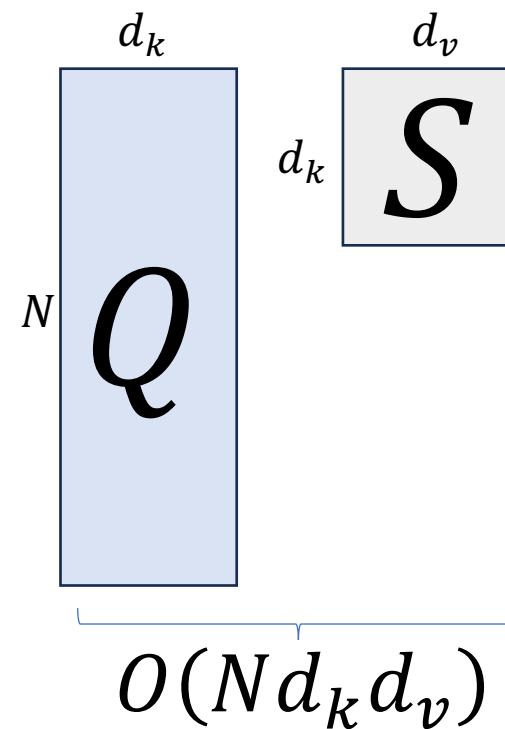
Original

$$O(N^2(d_v + d_k))$$

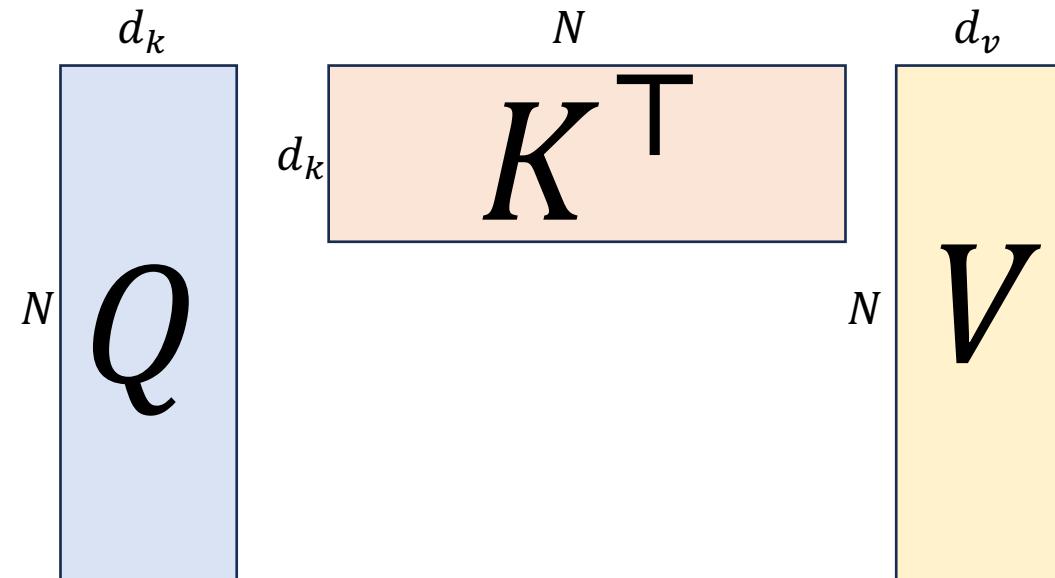


New

$$O(N d_k d_v)$$



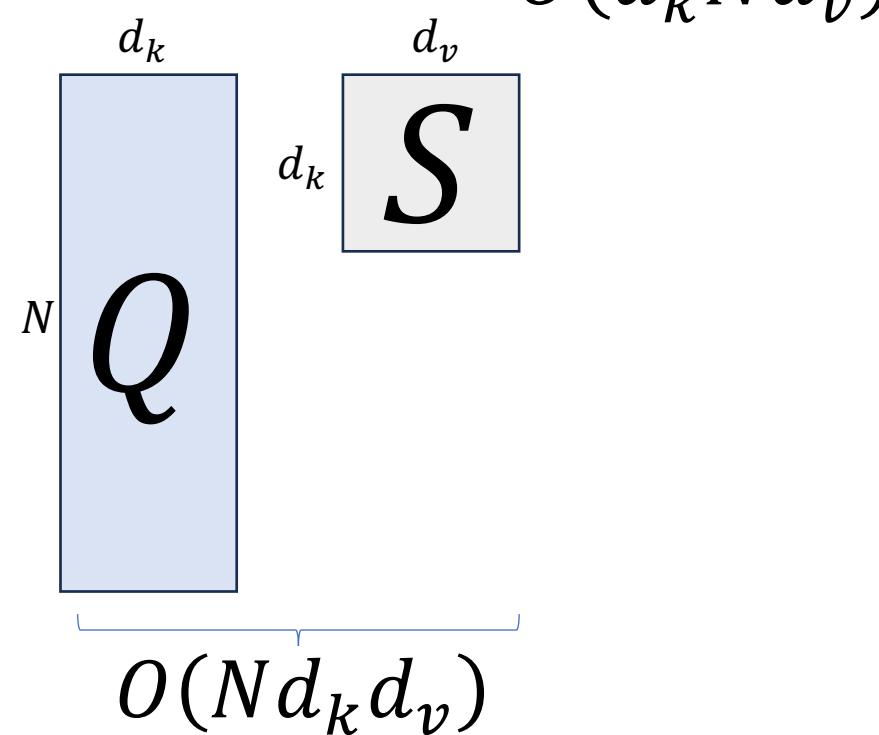
Letting $N = 2048$
 $d_k = d_v = 64$



Original

$$O(N^2(d_v + d_k)) = 536,870,912$$

1.56%!



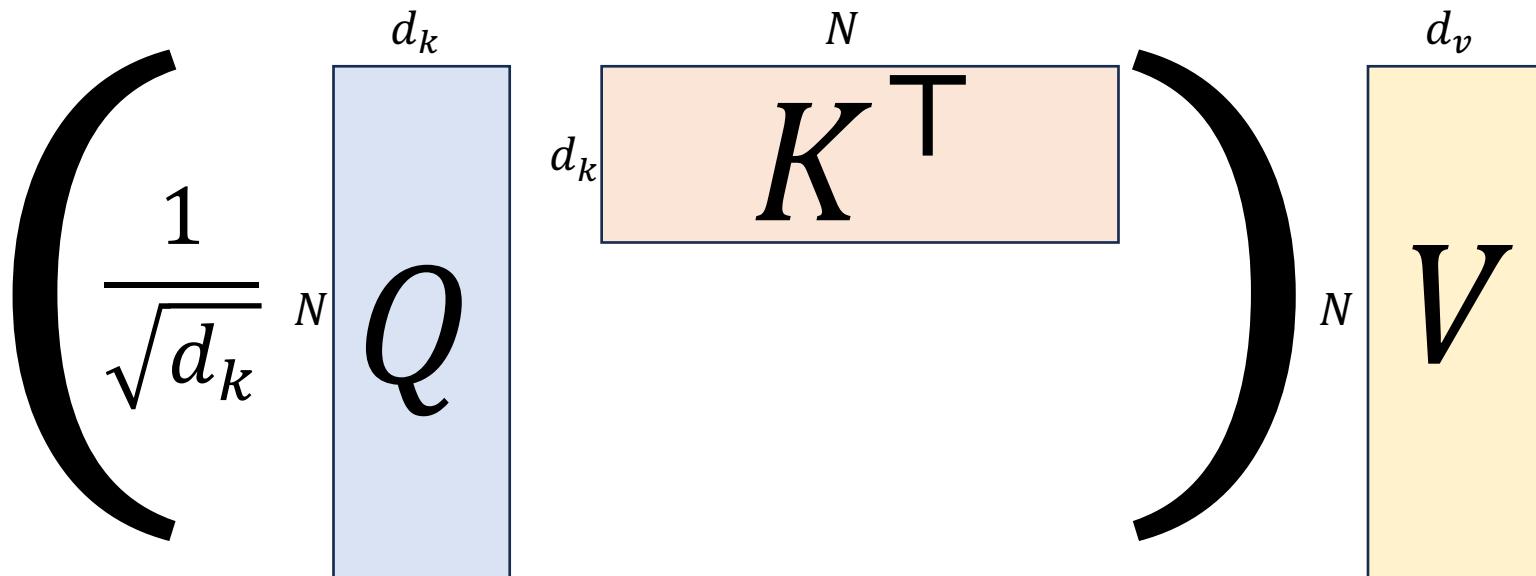
New

$$O(N d_k d_v) = 8,388,608$$

Obstacle

- Softmax prevents this reordered GEMM

Softmax $\left(\frac{1}{\sqrt{d_k}} \begin{matrix} N \\ Q \end{matrix} \begin{matrix} N \\ d_k \\ K^\top \end{matrix} \right) \begin{matrix} N \\ V \end{matrix} \begin{matrix} d_v \end{matrix}$



The diagram illustrates the Softmax operation in matrix form. It shows a large black bracket grouping a scalar $\frac{1}{\sqrt{d_k}}$ with a matrix multiplication. The matrix multiplication has two inputs: a matrix Q of size $N \times d_k$ and a matrix K^\top of size $N \times N$. The result of this multiplication is then multiplied by a matrix V of size $N \times d_v$.

Linear Attention

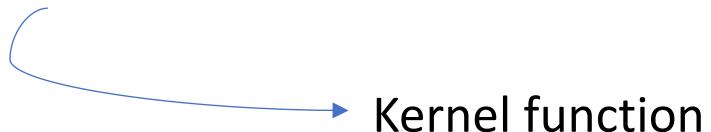
- Computing Softmax (Katharopoulos et al., 2020)

$$o_1 = \sum_{i=1}^N \alpha_{1,i} \quad v_i = \sum_{i=1}^N \frac{\exp(q_1 \cdot k_i)}{\sum_{j=1}^N \exp(q_1 \cdot k_j)} v_i$$

- Substituting \exp by

$$\exp(q \cdot k) \approx \phi(q) \cdot \phi(k)$$

- there exists

 Kernel function

$$o_1 \approx \sum_{i=1}^N \frac{\phi(q_1) \cdot \phi(k_i)}{\sum_{j=1}^N \phi(q_1) \cdot \phi(k_j)} v_i$$

Linear Attention

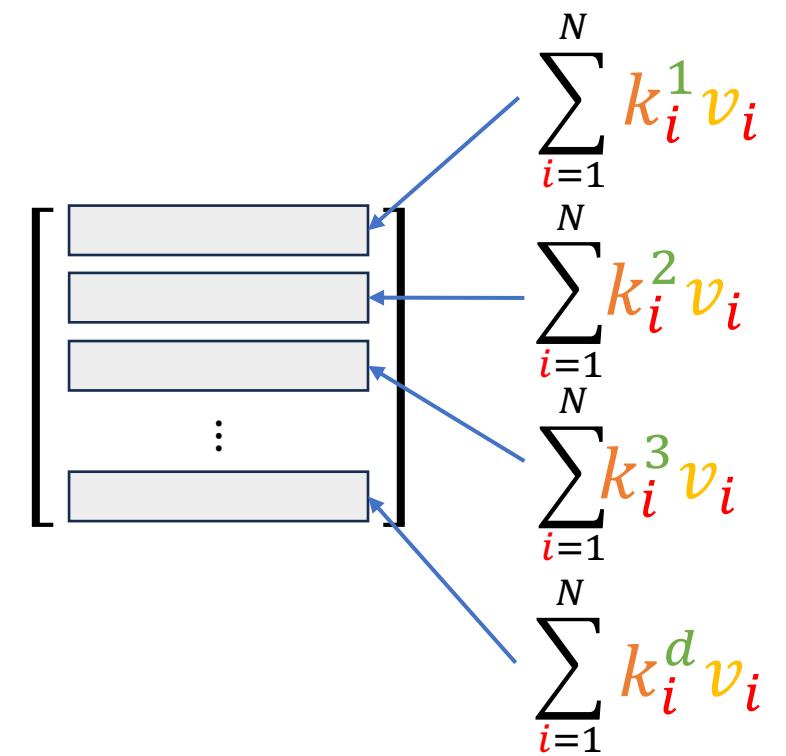
- Overall Output: complexity order $O(N)$

$$O \approx \phi(Q) \cdot (\phi(K) V), \quad O, Q, K, V \in \mathbb{R}^{N \times d}$$

- An example: denominator of o_1

$$\phi(q_1) = \begin{bmatrix} q_1^1 \\ q_1^2 \\ q_1^3 \\ \vdots \\ q_1^d \end{bmatrix} \quad \phi(k_i) = \begin{bmatrix} k_i^1 \\ k_i^2 \\ k_i^3 \\ \vdots \\ k_i^d \end{bmatrix},$$

$$\downarrow \quad \quad \quad \begin{bmatrix} q_1^1 & q_1^2 & q_1^3 & \dots & q_1^d \end{bmatrix}$$



Linear Attention

- Iterative computation to further reduce complexity

$$o_1 \approx \sum_{i=1}^N \frac{\phi(q_1) \cdot \phi(k_i)}{\sum_{j=1}^N \phi(q_1) \cdot \phi(k_j)} v_i$$

- where

$$\sum_{i=1}^N [\phi(q_1) \cdot \phi(k_i)] v_i = \phi(q_1)^\top \left(\sum_{i=1}^N k_i v_i^\top \right) \rightarrow$$

$$S_t = \sum_{i=1}^t k_i v_i^\top \in R^{d \times d}$$

$$S_t = S_{t-1} + k_t v_t^\top$$

$$o_t = \phi(q_t)^\top S_t$$

Linear Attention

- Today's Linear Attention
 - Baby linear attention: Linear Transformer, SANA, CHELA, LightningAttention, etc.
 - **Efficient** in computation, I/O, storage
 - Performance loss compared with *Softmax*
 - More advanced linear attention:
 - Delta rule
 - Gamma forget
 - Gated attention
 - Qwen3-Next and Kimi-linear, and many others

Inference Optimization: Outline

- Overview
- Attention Computation Optimization
 - Sparse Attention
 - Linear Attention
 - **Flash Attention**
 - Continuous Batching
- KV Cache Optimization
- Speculative Decoding
- Distributed Serving

Flash Attention

- Prior works
 - Reducing # of scaled dot-product, potentially sacrificing attention performance
 - Compute is fast while reading K and V , and writing S back the results are slow
- Challenges
 - I/O cost of loading/storing Q , K and V are non-trivial

Algorithm 0 Standard Attention Implementation

Require: Matrices $\mathbf{Q}, \mathbf{K}, \mathbf{V} \in \mathbb{R}^{N \times d}$ in HBM.

- 1: Load \mathbf{Q}, \mathbf{K} by blocks from HBM, compute $\mathbf{S} = \mathbf{Q}\mathbf{K}^\top$, write \mathbf{S} to HBM.
- 2: Read \mathbf{S} from HBM, compute $\mathbf{P} = \text{softmax}(\mathbf{S})$, write \mathbf{P} to HBM.
- 3: Load \mathbf{P} and \mathbf{V} by blocks from HBM, compute $\mathbf{O} = \mathbf{P}\mathbf{V}$, write \mathbf{O} to HBM.
- 4: Return \mathbf{O} .

Flash Attention

- From Softmax to Safe Softmax

$$\text{softmax}(x_i) = \frac{e^{x_i}}{\sum_{j=1}^n e^{x_j}}$$

$$\text{softmax}(x_i) = \frac{e^{x_i - \max(x)}}{\sum_{j=1}^n e^{x_j - \max(x)}}$$

- Online Safe Softmax: not enough space to store entire x

- Alg1: three-pass algorithm

$m_i: \max_{j=1}^i \{x_j\}$ with initial value $m_0 = -\infty$

$d_i: \sum_{j=1}^i e^{x_j - m_N}$ is the denominator of Softmax

$a_i:$ is the final Softmax output

```
for  $i \leftarrow 1, N$  do
     $m_i \leftarrow \max(m_{i-1}, x_i)$ 
end
for  $i \leftarrow 1, N$  do
     $d_i \leftarrow d_{i-1} + e^{x_i - m_N}$ 
end
for  $i \leftarrow 1, N$  do
     $a_i \leftarrow \frac{e^{x_i - m_N}}{d_N}$ 
end
```

Flash Attention

- Online Safe Softmax
 - d_i can be computed iteratively

$$\begin{aligned} d'_i &= \sum_{j=1}^i e^{x_j - m_i} \\ &= \left(\sum_{j=1}^{i-1} e^{x_j - m_i} \right) + e^{x_i - m_i} \\ &= \left(\sum_{j=1}^{i-1} e^{x_j - m_{i-1}} \right) e^{m_{i-1} - m_i} + e^{x_i - m_i} \\ &= d'_{i-1} e^{m_{i-1} - m_i} + e^{x_i - m_i} \end{aligned}$$

Algorithm 2-pass online softmax

for $i \leftarrow 1, N$ do

end

for $i \leftarrow 1, N$ do

end

$$\begin{aligned} m_i &\leftarrow \max(m_{i-1}, x_i) \\ d'_i &\leftarrow d'_{i-1} e^{m_{i-1} - m_i} + e^{x_i - m_i} \end{aligned}$$

$$a_i \leftarrow \frac{e^{x_i - m_N}}{d'_N}$$

Flash Attention

- Online Safe Softmax
 - One-pass safe softmax algorithm does not exist
 - Safe softmax is only our intermediate result:

$$O = \text{Softmax}(QK^T)V$$

NOTATIONS

$Q[k, :]$: the k -th row vector of Q matrix.

$K^T[:, i]$: the i -th column vector of K^T matrix.

$O[k, :]$: the k -th row of output O matrix.

$V[i, :]$: the i -th row of V matrix.

$\{\mathbf{o}_i\}$: $\sum_{j=1}^i a_j V[j, :]$, a row vector storing partial aggregation result $A[k, : i] \times V[:, i, :]$

BODY

for $i \leftarrow 1, N$ do

$$x_i \leftarrow Q[k, :] K^T[:, i]$$

$$m_i \leftarrow \max(m_{i-1}, x_i)$$

$$d'_i \leftarrow d'_{i-1} e^{m_{i-1} - m_i} + e^{x_i - m_i}$$

end

for $i \leftarrow 1, N$ do

$$a_i \leftarrow \frac{e^{x_i - m_N}}{d'_N}$$

$$\mathbf{o}_i \leftarrow \mathbf{o}_{i-1} + a_i V[i, :]$$

end

$$O[k, :] \leftarrow \mathbf{o}_N$$

Flash Attention

- One-pass Attention

- Define an “intermediate” output

$$\mathbf{o}'_i := \left(\sum_{j=1}^i \frac{e^{x_j - m_i}}{d'_i} V[j, :] \right)$$

for $i \rightarrow 1, N$

$$x_i \leftarrow Q[k, :] K^T[:, i]$$

$$m_i \leftarrow \max(m_{i-1}, x_i)$$

$$d'_i \leftarrow d'_{i-1} e^{m_{i-1} - m_i} + e^{x_i - m_i}$$

$$o'_i = o'_{i-1} \frac{d'_{i-1} e^{m_{i-1} - m_i}}{d'_i} + \frac{e^{x_i - m_i}}{d'_i} V[i, :]$$

end

$$O[k, :] \leftarrow o'_N$$

Flash Attention

- Compute it iteratively

$$\begin{aligned}
 \mathbf{o}'_i &= \sum_{j=1}^i \frac{e^{x_j - m_i}}{d'_i} V[j, :] \\
 &= \left(\sum_{j=1}^{i-1} \frac{e^{x_j - m_i}}{d'_i} V[j, :] \right) + \boxed{\frac{e^{x_i - m_i}}{d'_i} V[i, :]} \\
 &= \left(\sum_{j=1}^{i-1} \frac{e^{x_j - m_{i-1}}}{d'_{i-1}} \frac{e^{x_j - m_i}}{e^{x_j - m_{i-1}}} \frac{d'_{i-1}}{d'_i} V[j, :] \right) + \frac{e^{x_i - m_i}}{d'_i} V[i, :] \\
 &= \left(\sum_{j=1}^{i-1} \frac{e^{x_j - m_{i-1}}}{d'_{i-1}} V[j, :] \right) \frac{d'_{i-1}}{d'_i} e^{m_{i-1} - m_i} + \frac{e^{x_i - m_i}}{d'_i} V[i, :] \\
 &= \mathbf{o}'_{i-1} \frac{d'_{i-1} e^{m_{i-1} - m_i}}{d'_i} + \frac{e^{x_i - m_i}}{d'_i} V[i, :]
 \end{aligned}$$

Flash Attention

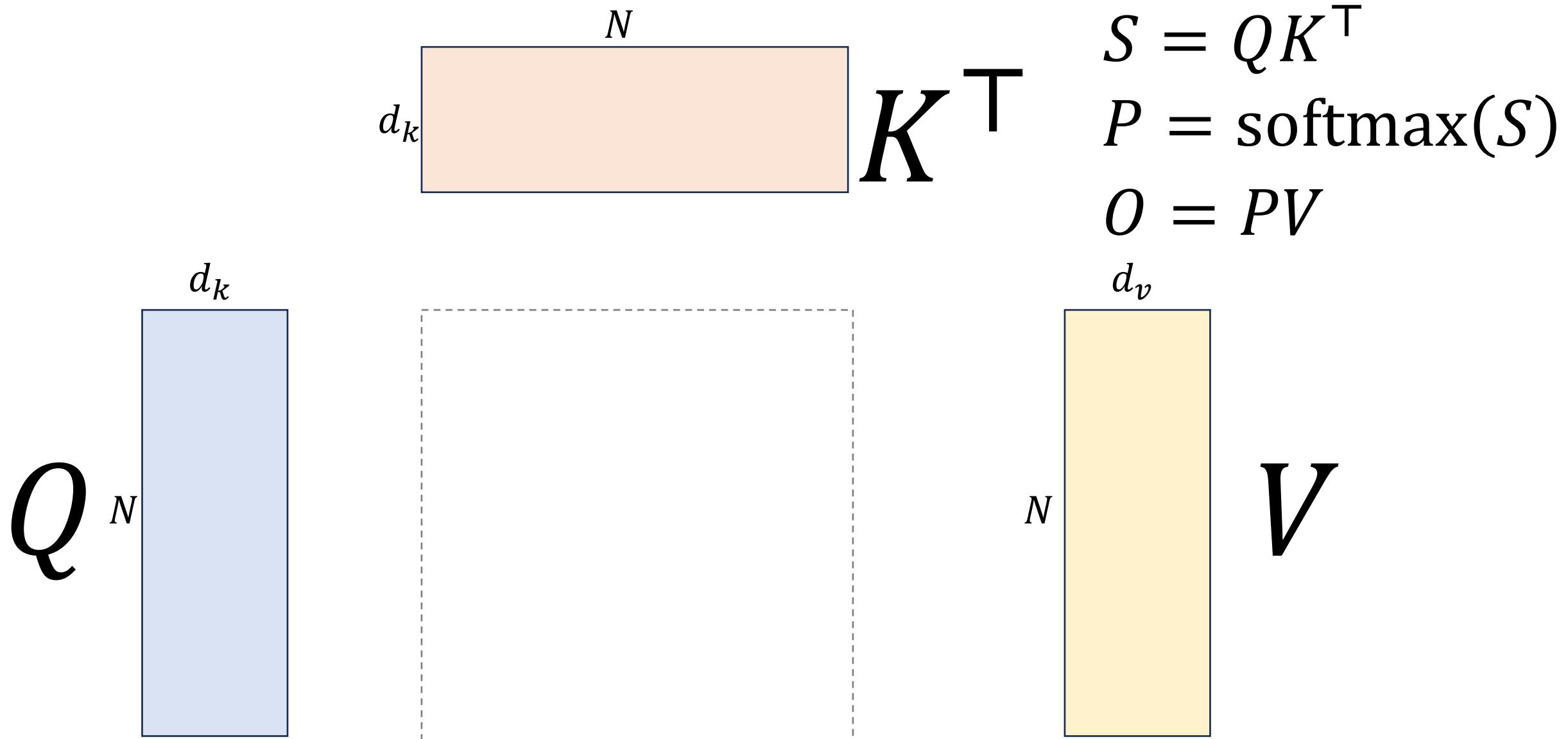
Tiling: loading and computing at the block granularity

• Pseudocode of Flash Attention

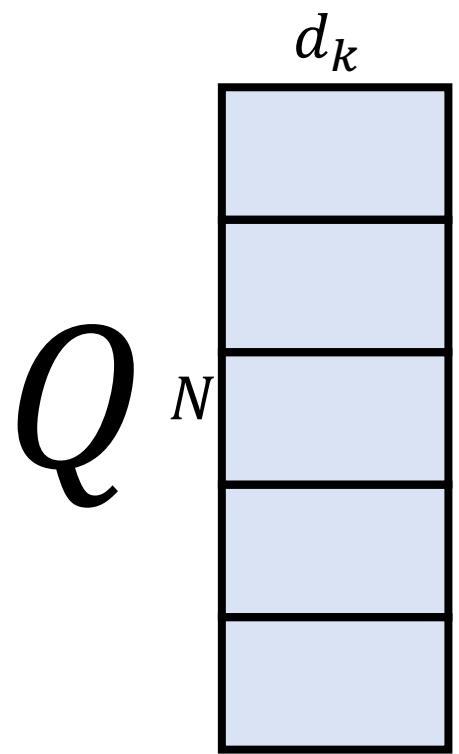
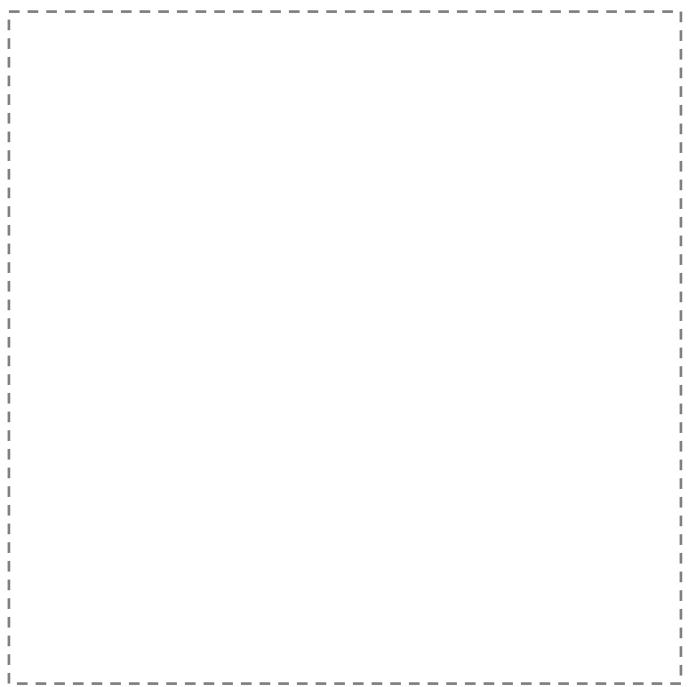
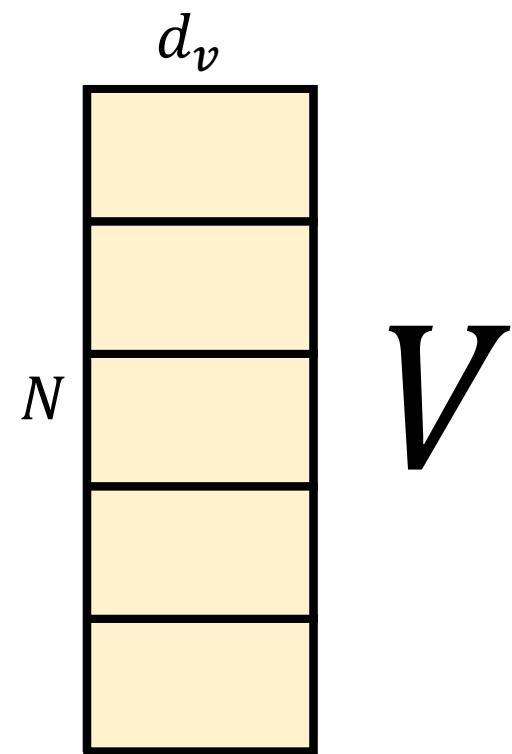
Algorithm 1 FLASHATTENTION

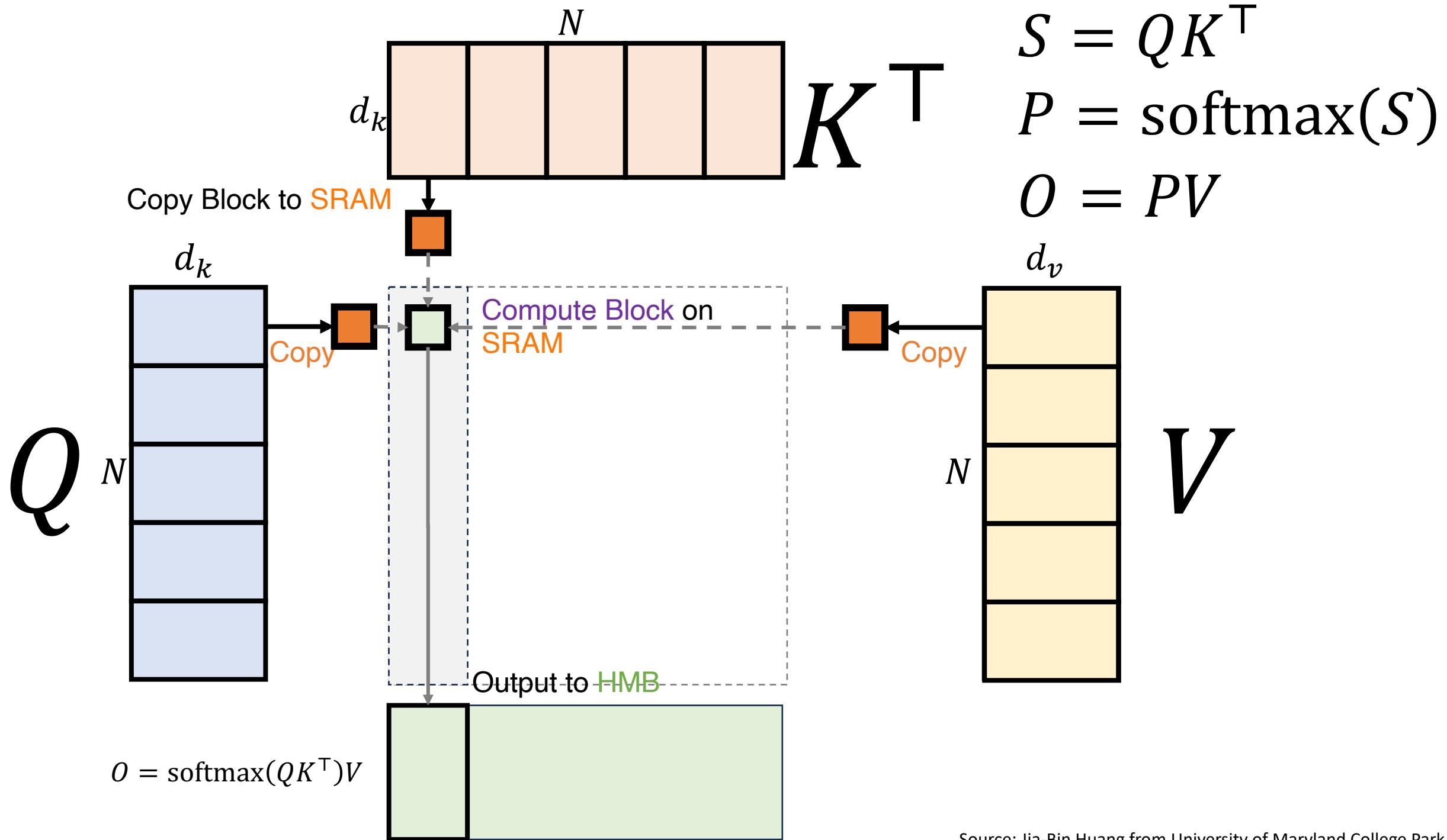
Require: Matrices $\mathbf{Q}, \mathbf{K}, \mathbf{V} \in \mathbb{R}^{N \times d}$ in HBM, on-chip SRAM of size M .

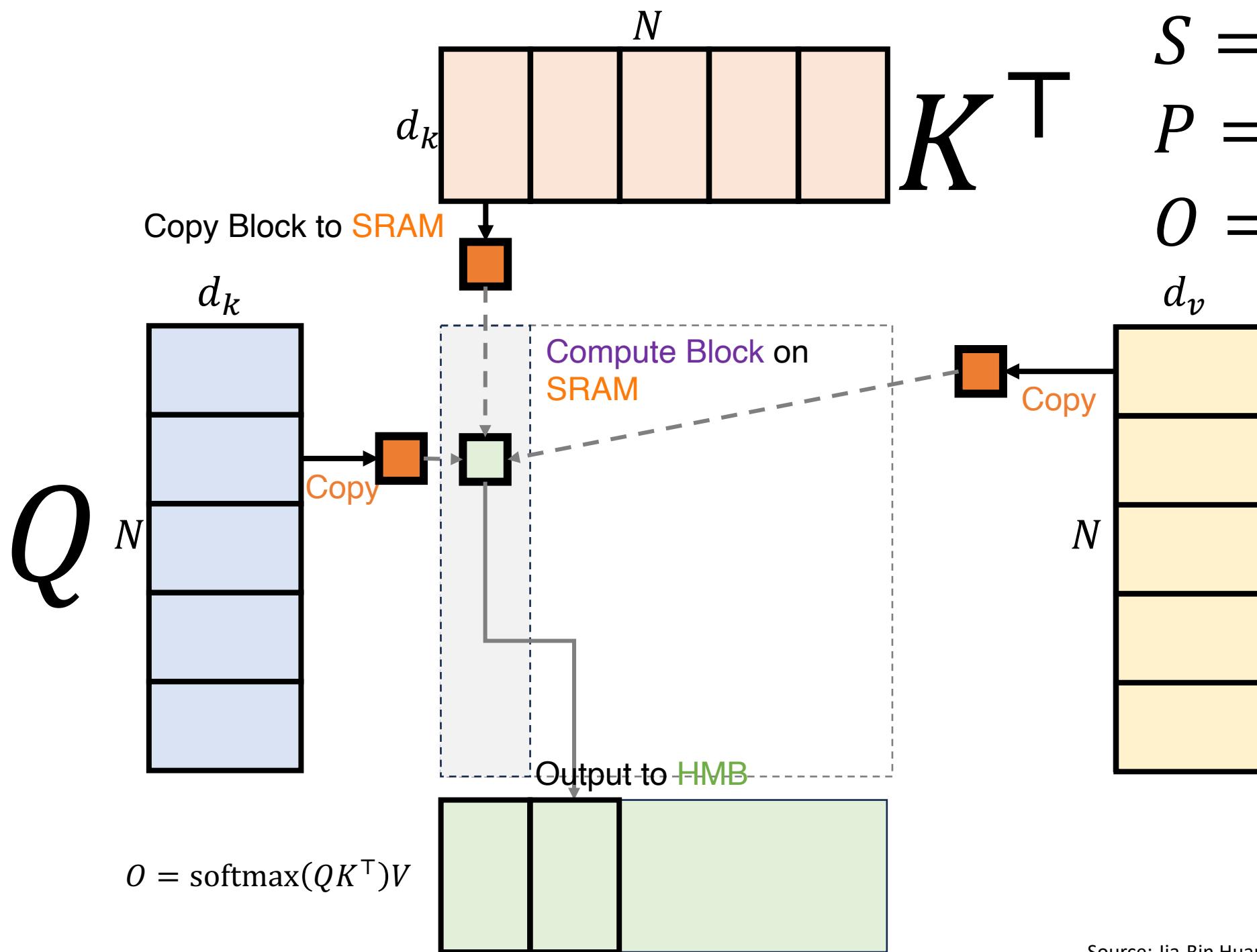
- 1: Set block sizes $B_c = \lceil \frac{M}{4d} \rceil, B_r = \min(\lceil \frac{M}{4d} \rceil, d)$.
- 2: Initialize $\mathbf{O} = (0)_{N \times d} \in \mathbb{R}^{N \times d}, \ell = (0)_N \in \mathbb{R}^N, m = (-\infty)_N \in \mathbb{R}^N$ in HBM.
- 3: Divide \mathbf{Q} into $T_r = \lceil \frac{N}{B_r} \rceil$ blocks $\mathbf{Q}_1, \dots, \mathbf{Q}_{T_r}$ of size $B_r \times d$ each, and divide \mathbf{K}, \mathbf{V} in to $T_c = \lceil \frac{N}{B_c} \rceil$ blocks $\mathbf{K}_1, \dots, \mathbf{K}_{T_c}$ and $\mathbf{V}_1, \dots, \mathbf{V}_{T_c}$, of size $B_c \times d$ each.
- 4: Divide \mathbf{O} into T_r blocks $\mathbf{O}_1, \dots, \mathbf{O}_{T_r}$ of size $B_r \times d$ each, divide ℓ into T_r blocks $\ell_1, \dots, \ell_{T_r}$ of size B_r each, divide m into T_r blocks m_1, \dots, m_{T_r} of size B_r each.
- 5: **for** $1 \leq j \leq T_c$ **do** Outer Loop on Key/Value
- 6: Load $\mathbf{K}_j, \mathbf{V}_j$ from HBM to on-chip SRAM.
- 7: **for** $1 \leq i \leq T_r$ **do** Inner Loop on Key/Value
- 8: Load $\mathbf{Q}_i, \mathbf{O}_i, \ell_i, m_i$ from HBM to on-chip SRAM.
- 9: On chip, compute $\mathbf{S}_{ij} = \mathbf{Q}_i \mathbf{K}_j^T \in \mathbb{R}^{B_r \times B_c}$.
- 10: On chip, compute $\tilde{m}_{ij} = \text{rowmax}(\mathbf{S}_{ij}) \in \mathbb{R}^{B_r}, \tilde{\mathbf{P}}_{ij} = \exp(\mathbf{S}_{ij} - \tilde{m}_{ij}) \in \mathbb{R}^{B_r \times B_c}$ (pointwise), $\tilde{\ell}_{ij} = \text{rowsum}(\tilde{\mathbf{P}}_{ij}) \in \mathbb{R}^{B_r}$.
- 11: On chip, compute $m_i^{\text{new}} = \max(m_i, \tilde{m}_{ij}) \in \mathbb{R}^{B_r}, \ell_i^{\text{new}} = e^{m_i - m_i^{\text{new}}} \ell_i + e^{\tilde{m}_{ij} - m_i^{\text{new}}} \tilde{\ell}_{ij} \in \mathbb{R}^{B_r}$.
- 12: Write $\mathbf{O}_i \leftarrow \text{diag}(\ell_i^{\text{new}})^{-1} (\text{diag}(\ell_i) e^{m_i - m_i^{\text{new}}} \mathbf{O}_i + e^{\tilde{m}_{ij} - m_i^{\text{new}}} \tilde{\mathbf{P}}_{ij} \mathbf{V}_j)$ to HBM.
- 13: Write $\ell_i \leftarrow \ell_i^{\text{new}}, m_i \leftarrow m_i^{\text{new}}$ to HBM.
- 14: **end for**
- 15: **end for**
- 16: Return \mathbf{O} .



$$d_k \begin{array}{|c|c|c|c|c|} \hline & N & & & \\ \hline \end{array} K^\top \quad S = QK^\top$$
$$P = \text{softmax}(S)$$
$$O = PV$$







$$S = QK^\top$$

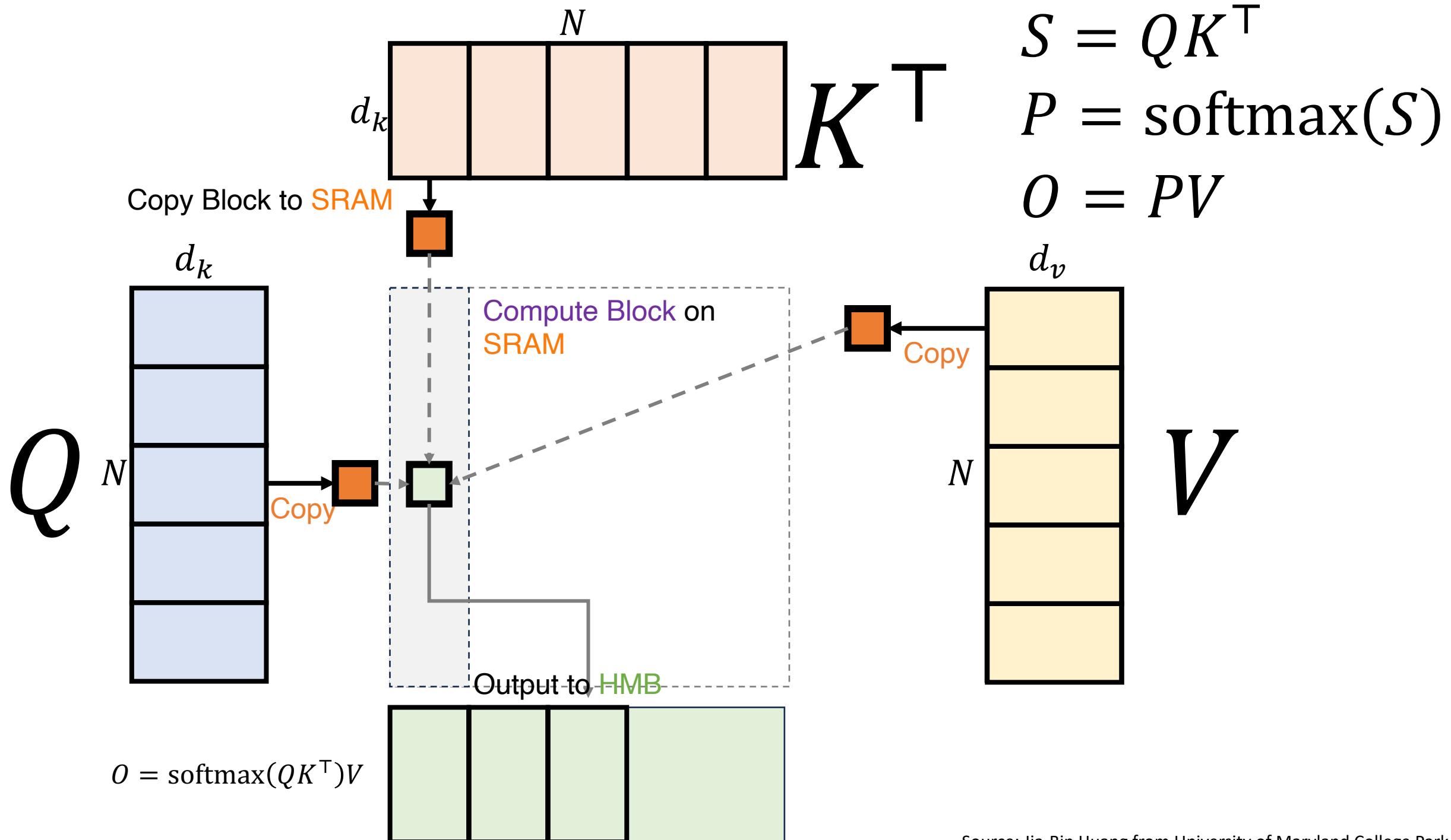
$$P = \text{softmax}(S)$$

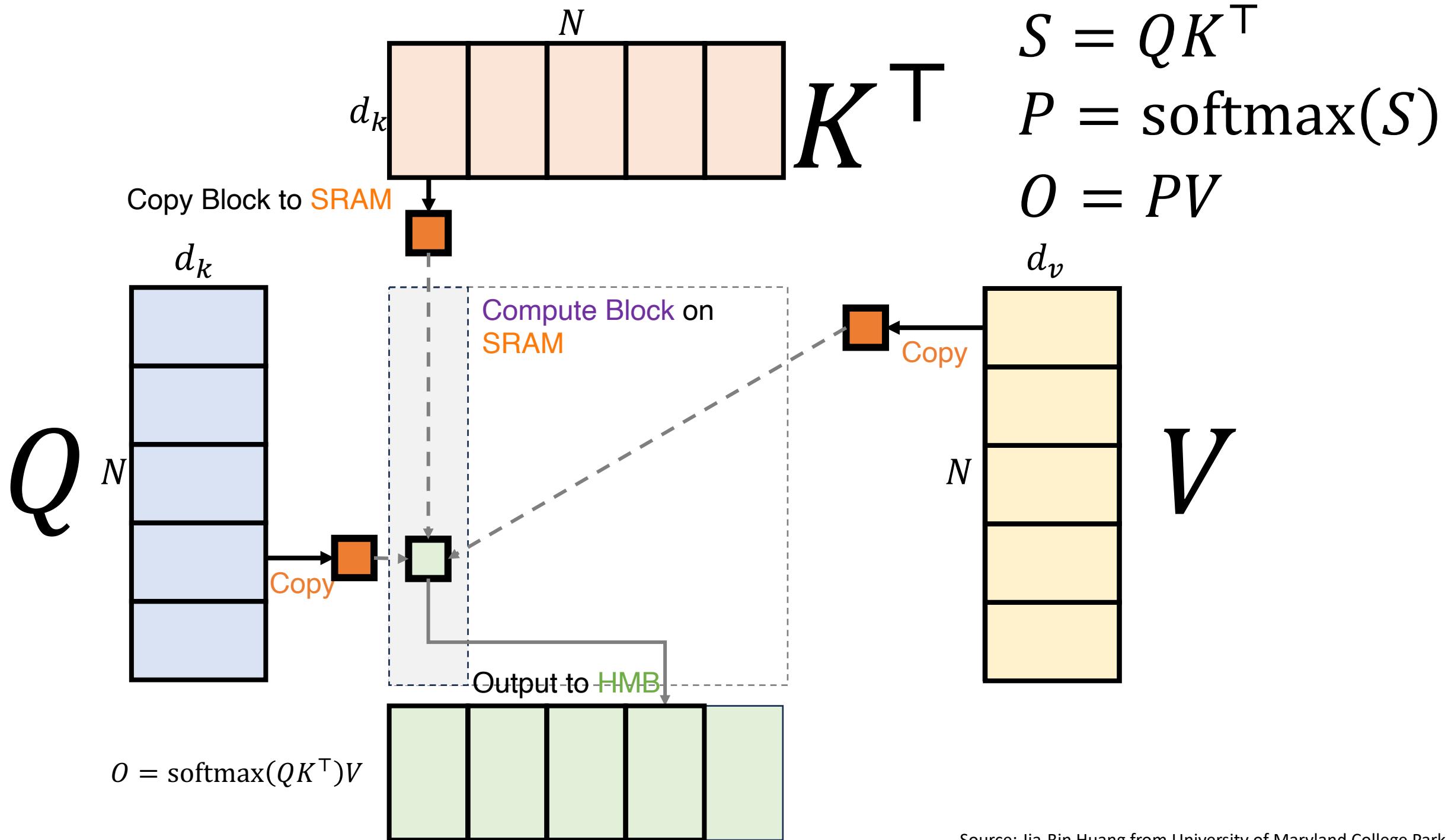
$$O = PV$$

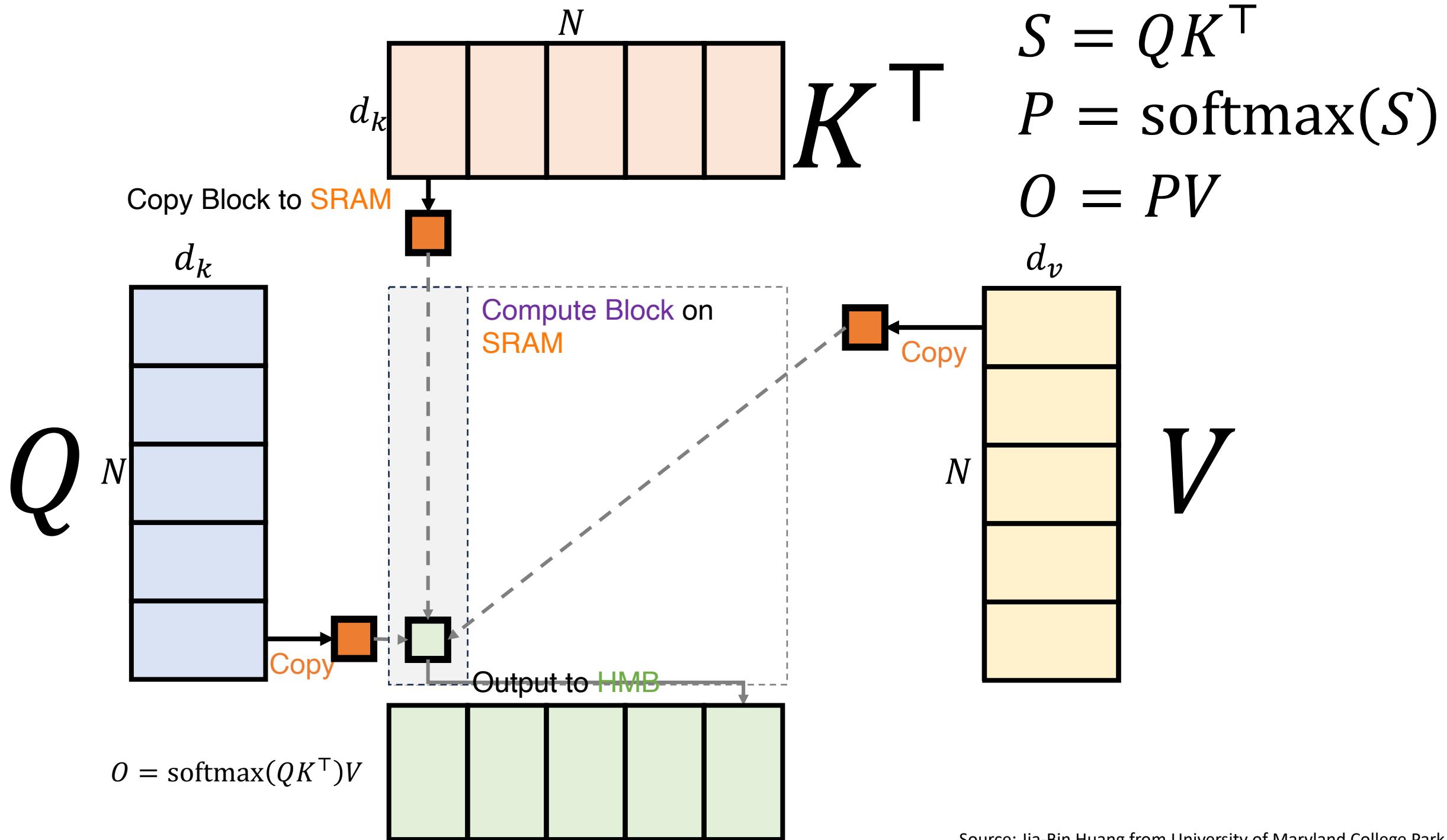
d_v

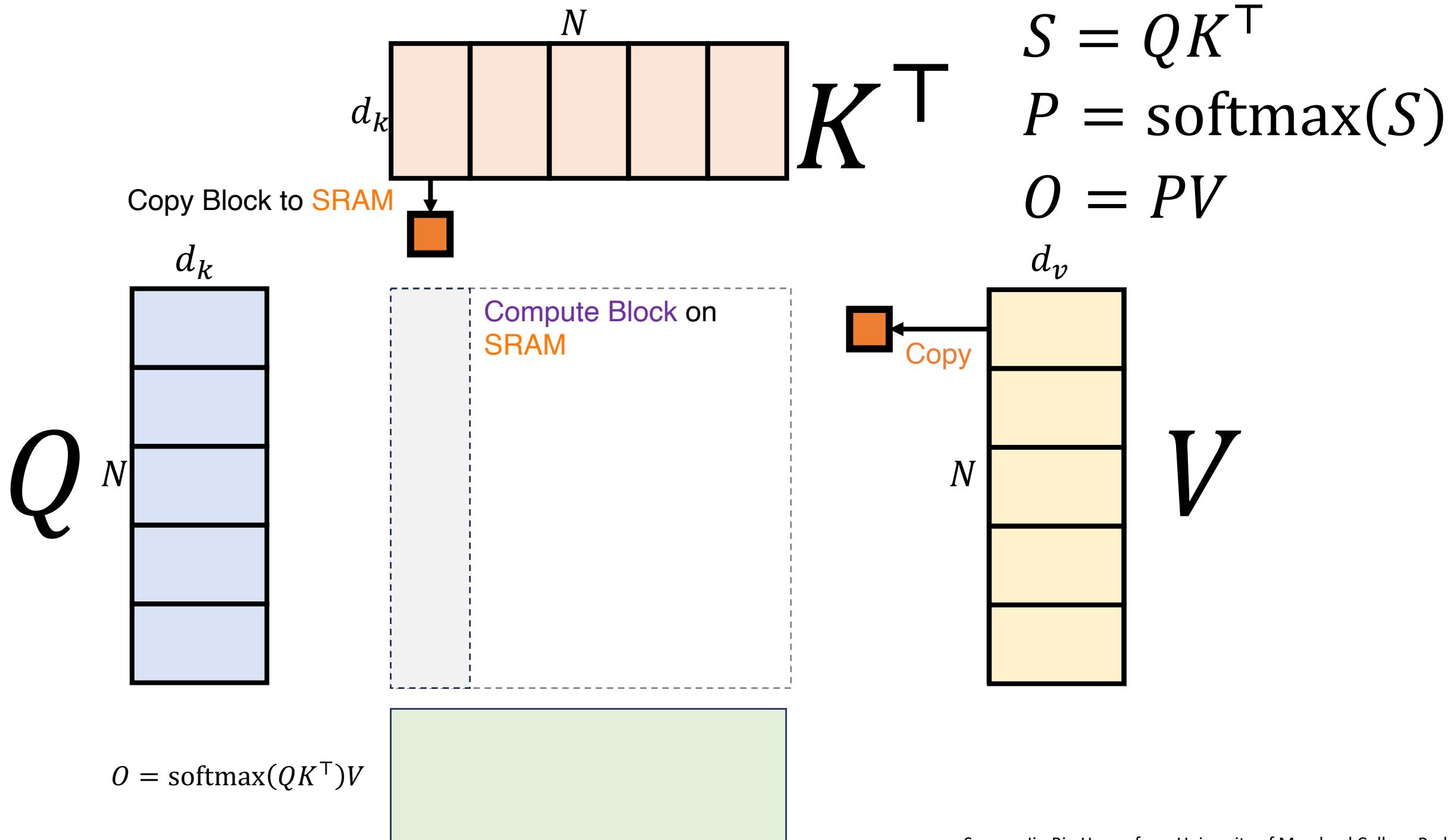
V

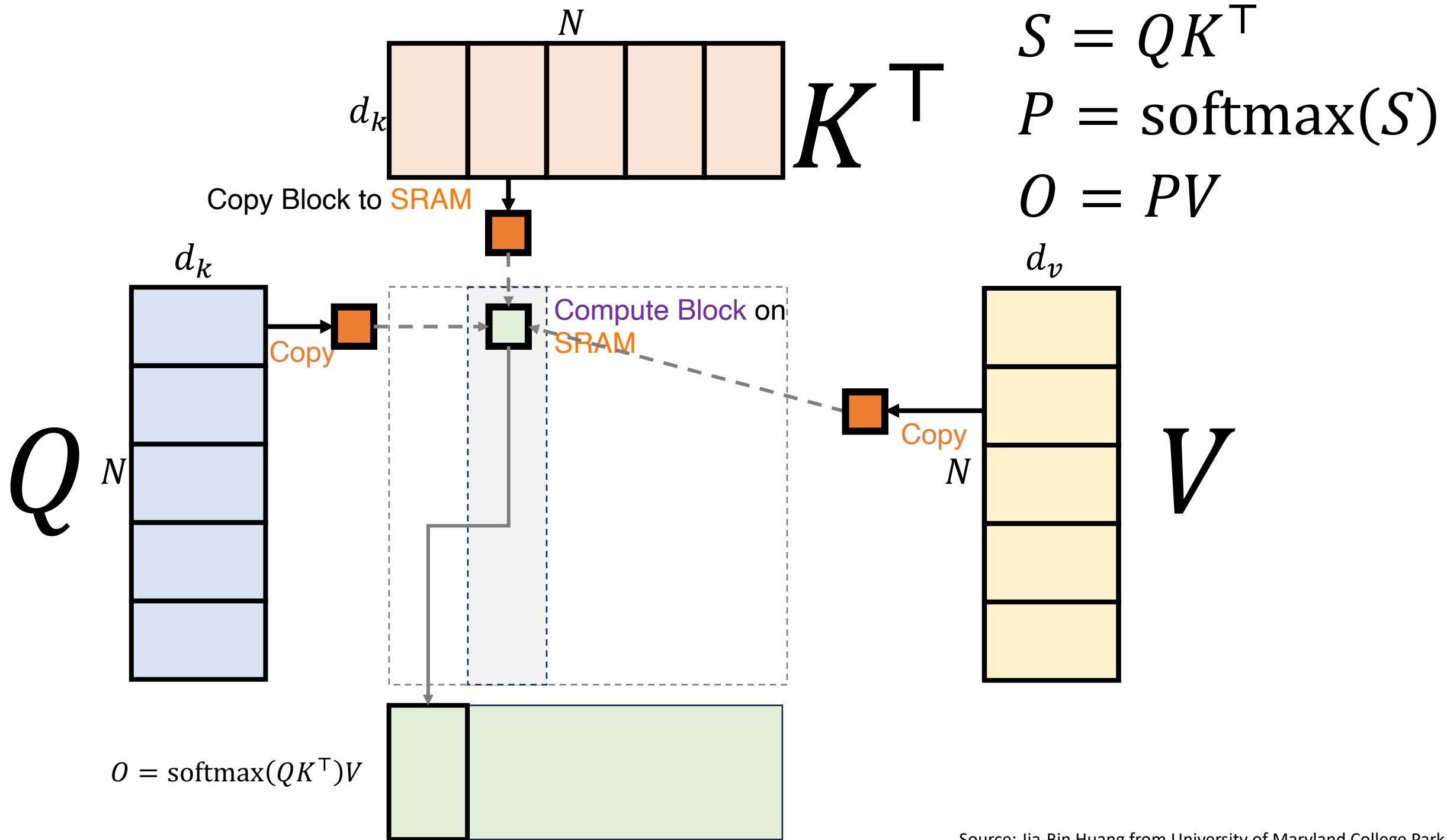
$$\theta = \text{softmax}(QK^\top)V$$

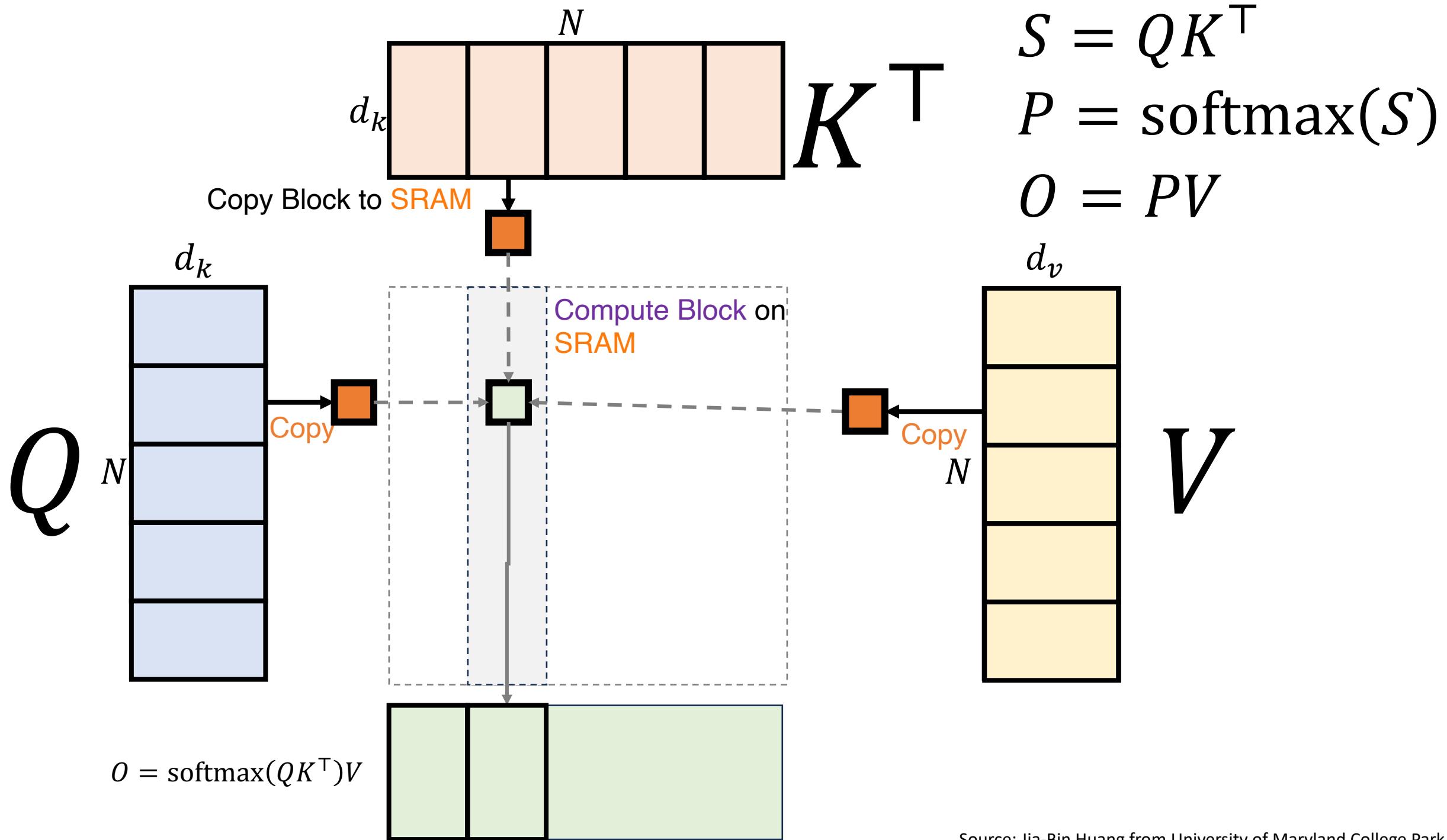


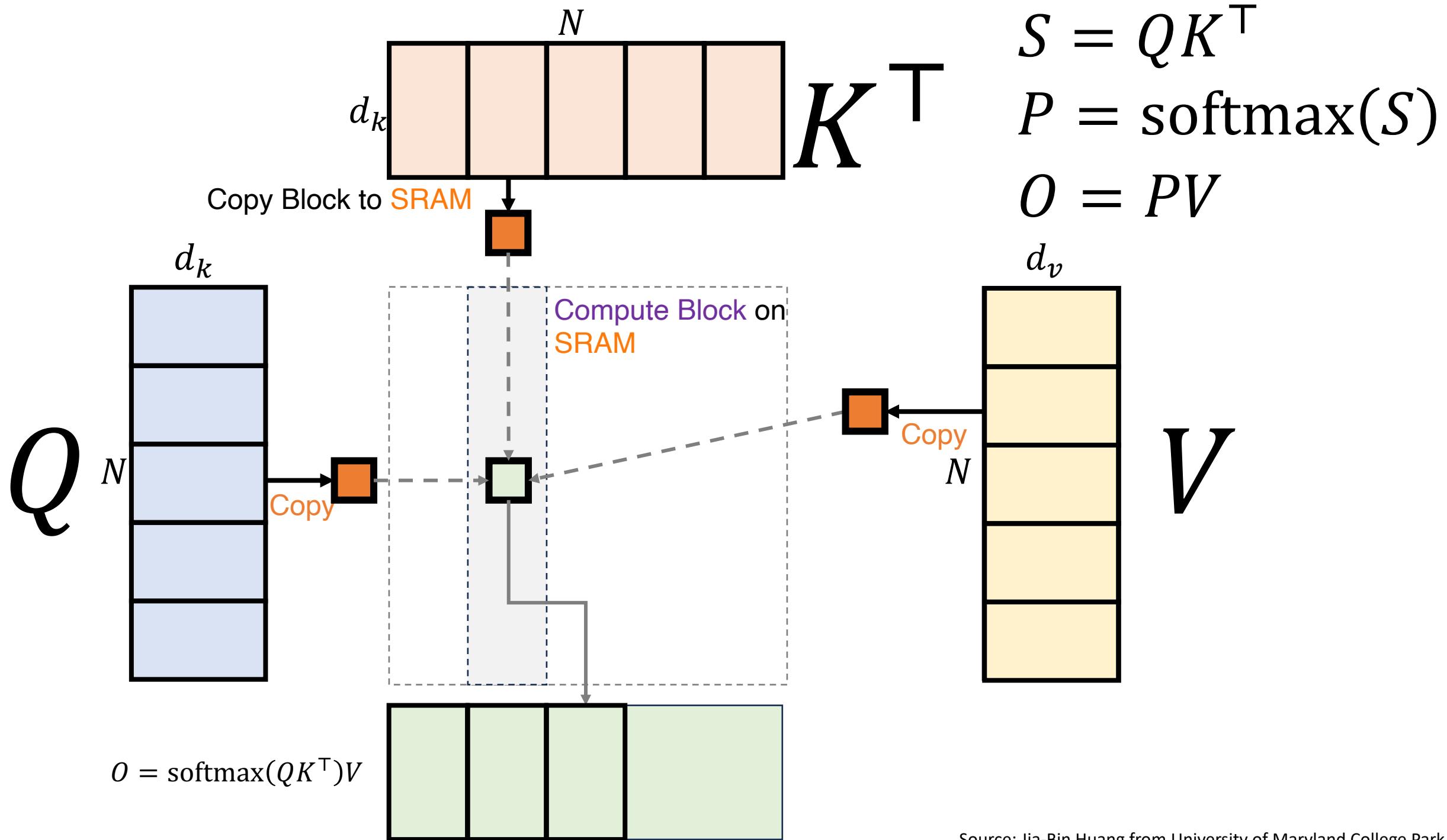


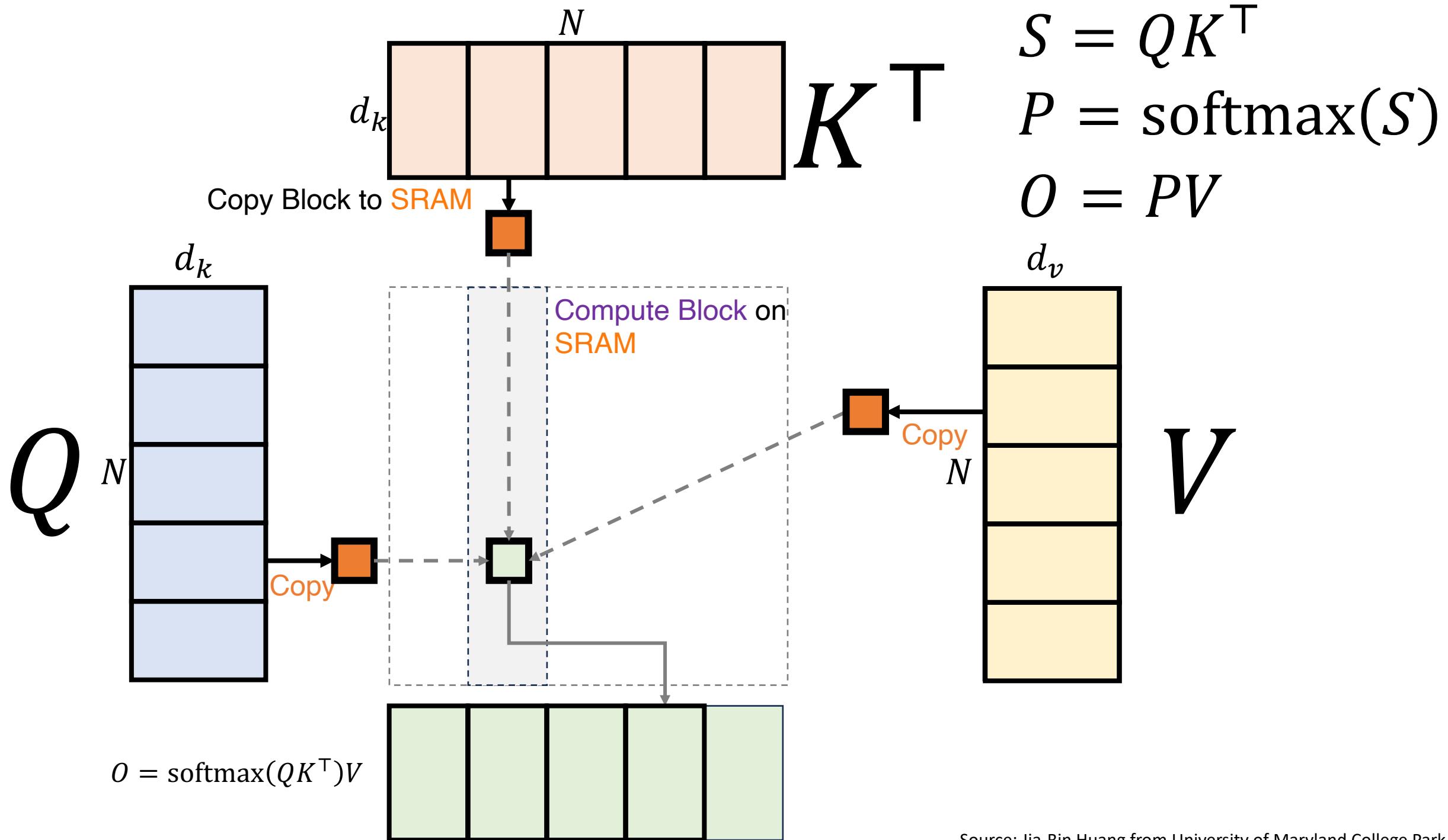


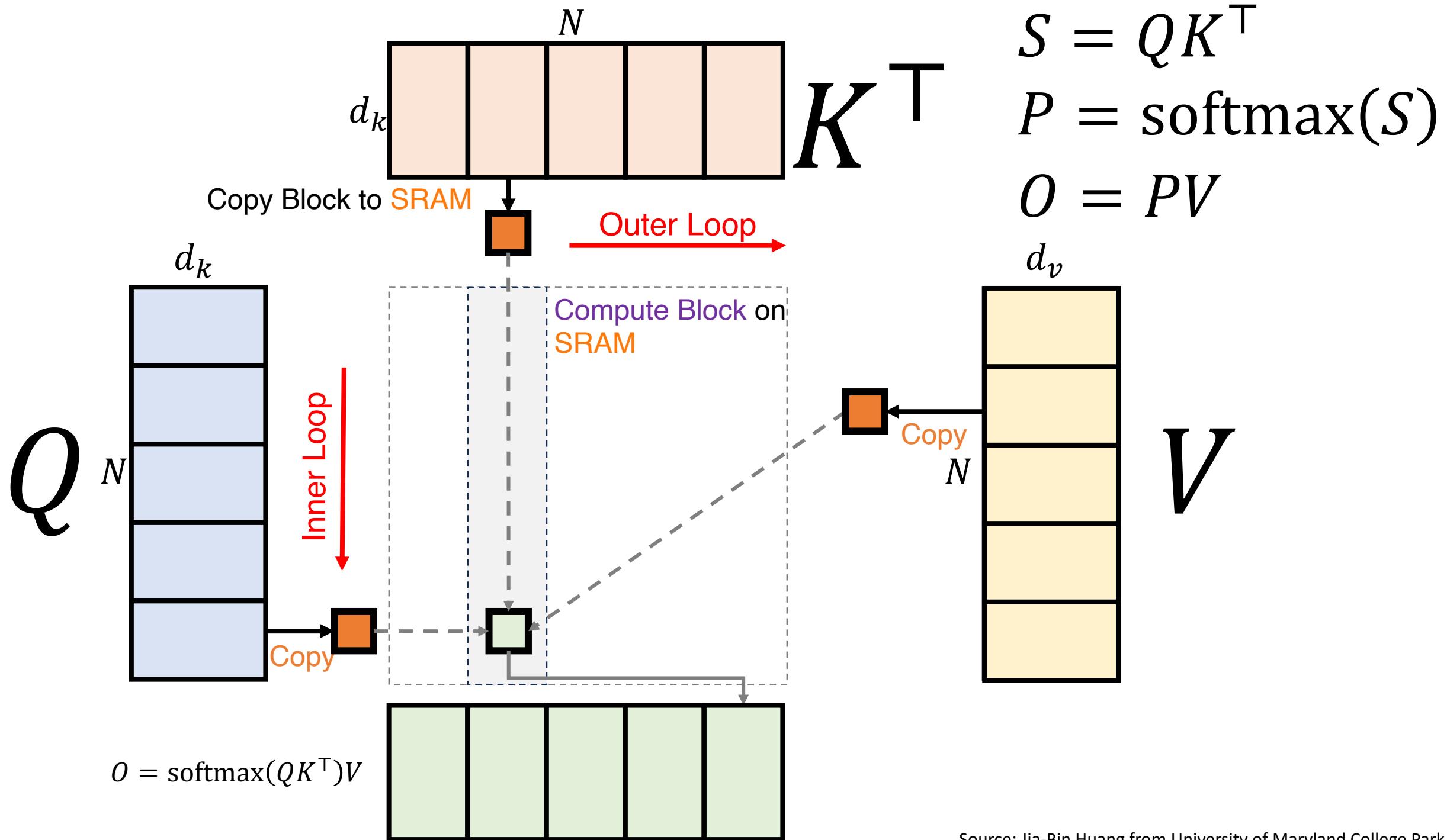






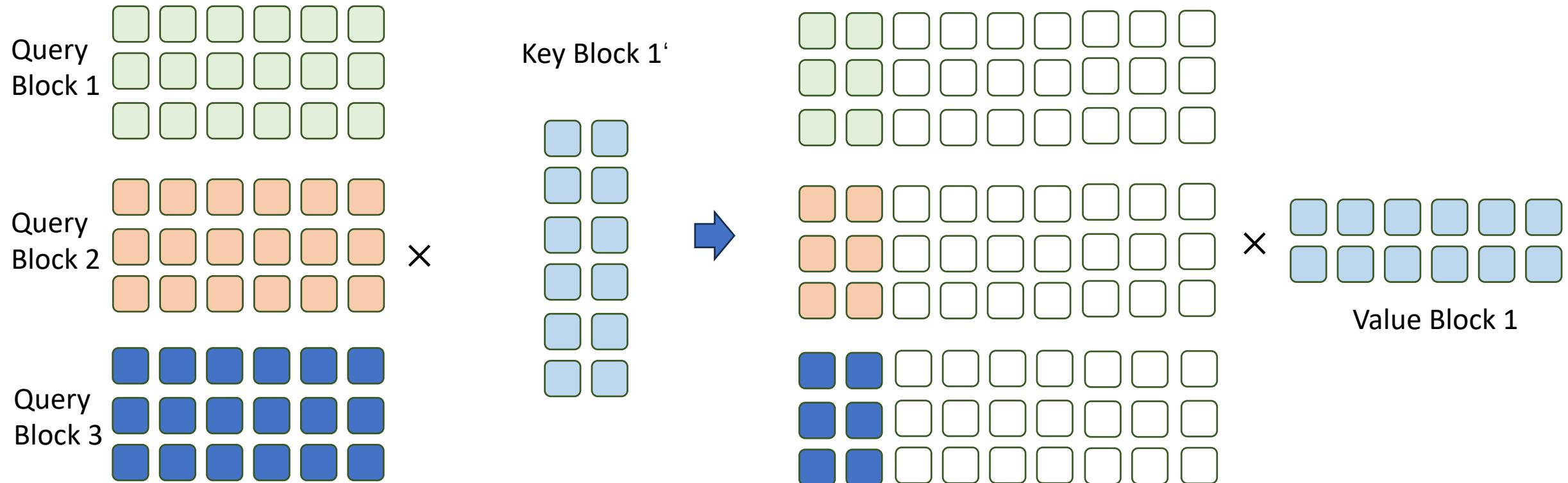






Flash Attention

- Flash Attention (Tiling)



Flash Attention

- Kernel Fusion

- Multiple separate operations or kernels (small, independent programs that run on hardware like GPUs) are combined or "fused" into a single, more efficient kernel.

Kernel 1: Scale

T0	T1	T2	T3
T4	T5	T6	T7
T8	T9	T10	T11
T12	T13	T14	T15

Thread Block (16 threads)

Kernel 2: ReLU

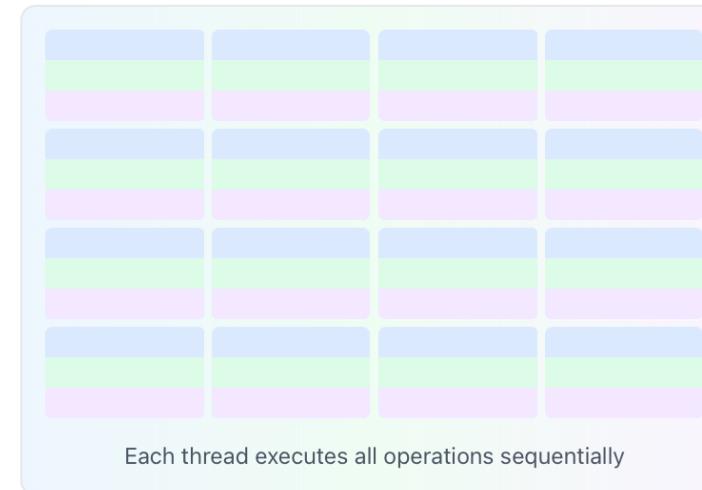
T0	T1	T2	T3
T4	T5	T6	T7
T8	T9	T10	T11
T12	T13	T14	T15

Thread Block (16 threads)

Kernel 3: Add

T0	T1	T2	T3
T4	T5	T6	T7
T8	T9	T10	T11
T12	T13	T14	T15

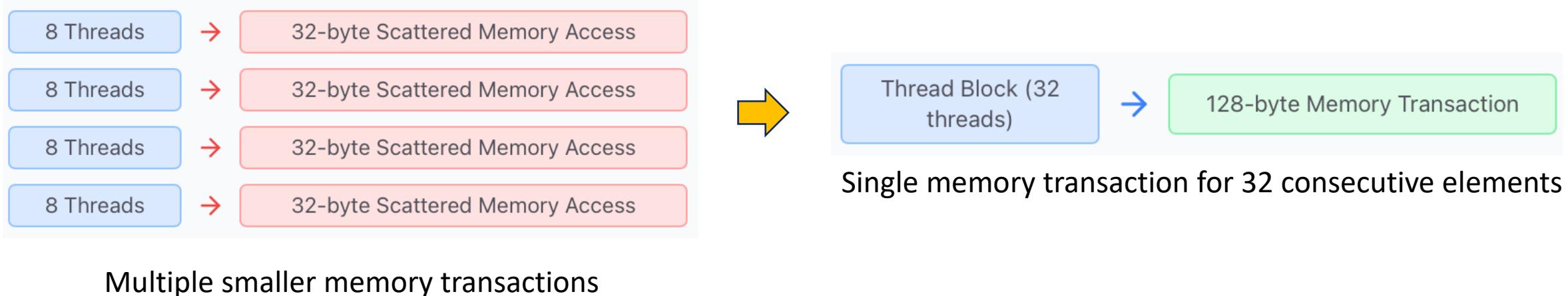
Thread Block (16 threads)



Pay the launch overhead **once** instead of many times

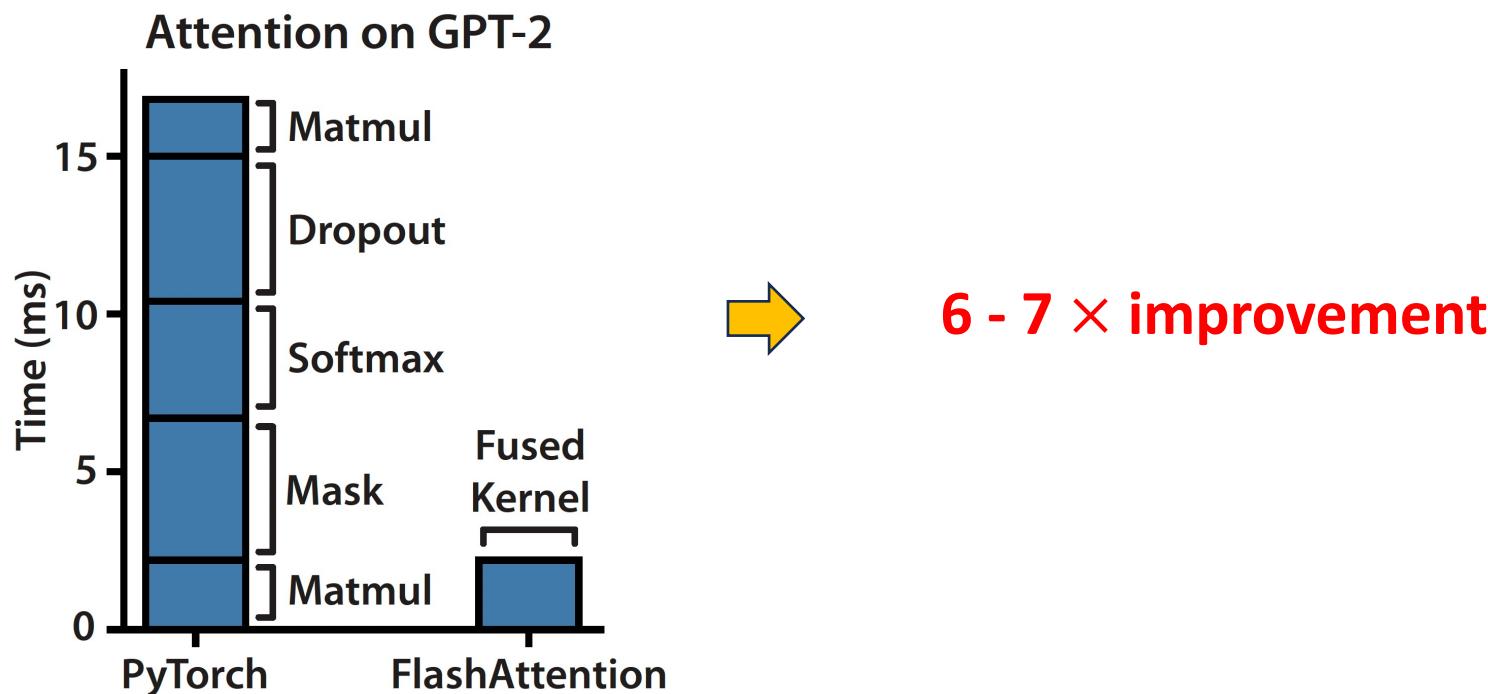
Flash Attention

- Kernel Fusion
 - Minimizing data movement between slow global memory and faster on-chip memory (like SRAM or registers), avoids storing intermediate results



Flash Attention

- Kernel Fusion
 - FlashAttention kernel fusion combining multiple (block-wise) steps of the attention computation—such as scaling, masking, softmax normalization, and matrix multiplications—into custom fused CUDA kernels



Flash Attention

- Complexity Analysis
 - GPT2 Medium (seq. length 1024, head dim. 64, 16 heads, batch size 64) on A100

Attention	Standard	FLASHATTENTION
GFLOPs	66.6	75.2
HBM R/W (GB)	40.3	4.4
Runtime (ms)	41.7	7.3

- Computational complexity: Flash Attention is slightly higher
- Memory complexity: Flash Attention is significantly better $O(Nd)$
- I/O complexity
 - Standard Attention $O(N^2d)$ versus Flash Attention $O(N^2d^2M^{-1})$
 - Outer loop runs $T_c = N/B_c = 4d/M$ where M is SRAM size of a SM, and reads K and V once
 - Inner loop reads Q , O , and write O back to HBM
 - Total I/O complexity: $O(Nd) \times T_c = O(N^2d^2M^{-1})$

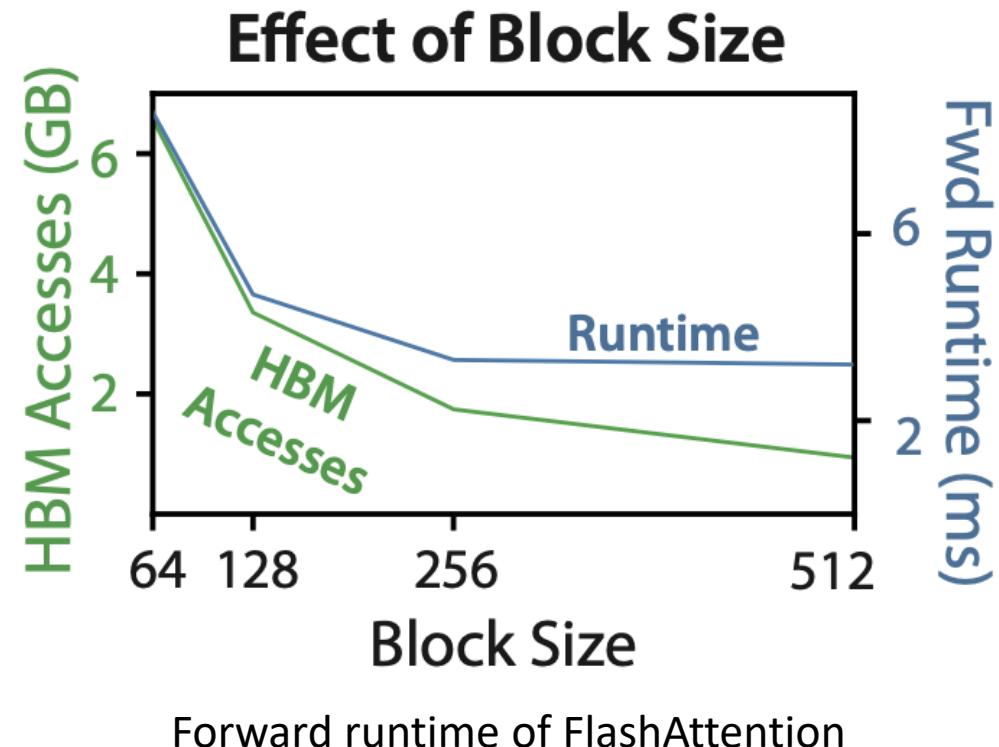
Flash Attention

- Flash Attention in practice

- Impact of hyper parameters:

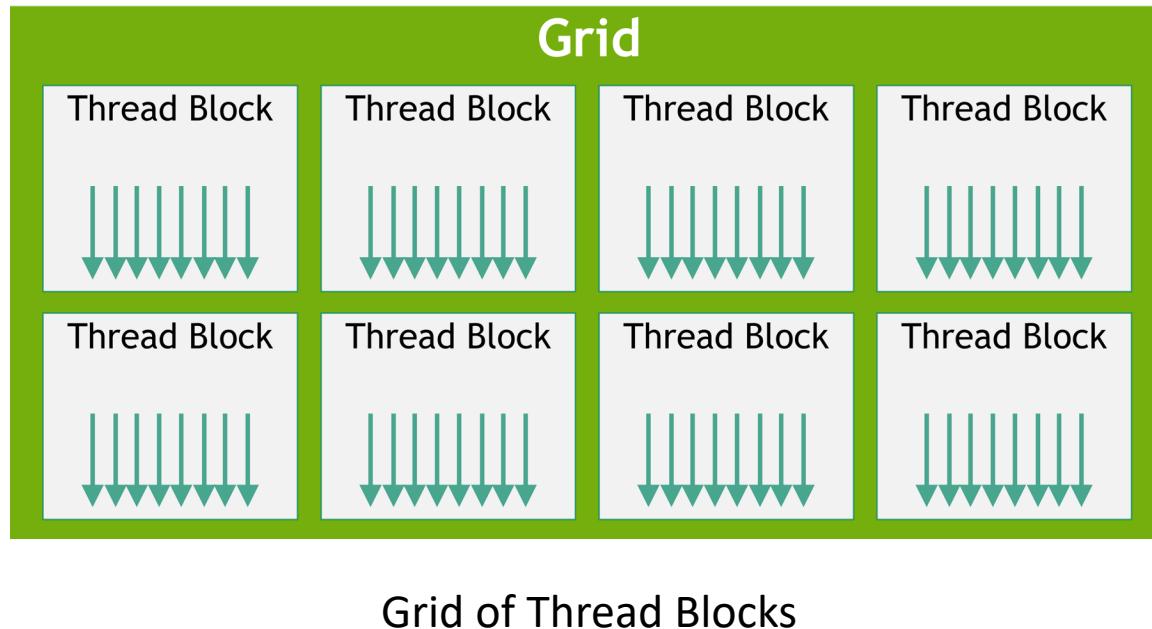
Larger block size reduces the number of data loading, thus improving the forward runtime

- As hidden dimension becomes large, the block size shrinks
 - $O(N^2 d^2 M^{-1})$ is quadratic to the hidden dimension d , while M is constrained by the hardware



Flash Attention

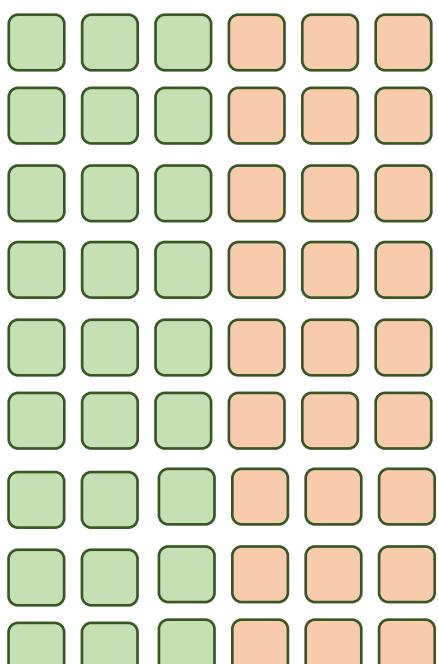
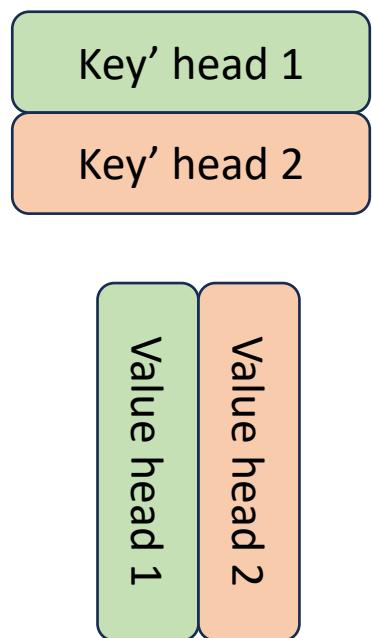
- Flash Attention
 - Underutilized streaming multi-processors for **small batch size** but **long sequences**



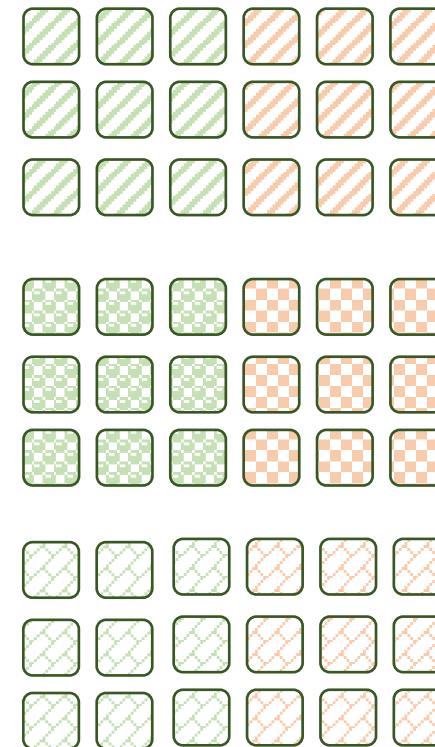
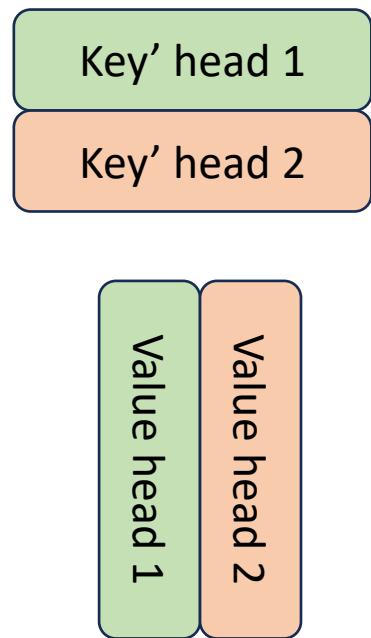
- GPU grid
 - Flash Attention enables Parallel computing on **batches and heads**
 - The grid consists of *batch_size* × *head_number* thread blocks
 - *Batch_size* = 2 and *head_number* = 16, meaning that only 16 out of 108 SMs are used on A100

Flash Attention

- Flash Attention v2
 - Making FlashAttention **sequence parallel**
 - The shape of a grid: `grid(num_m_block, batch_size, num_heads)`

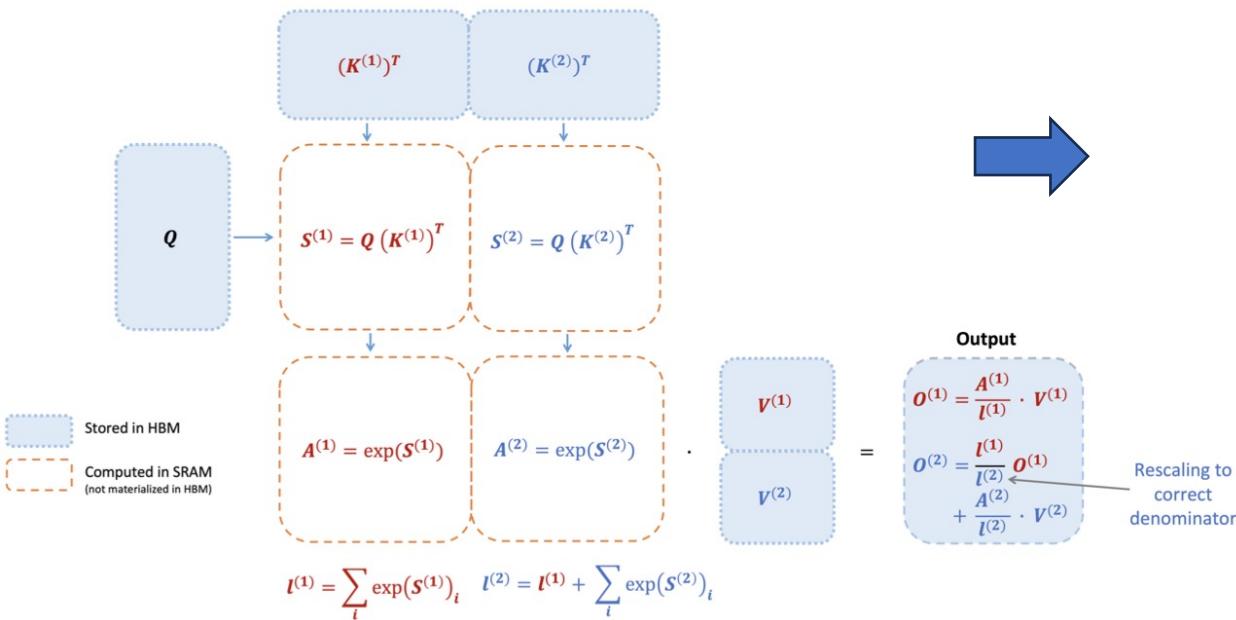


Sequence parallelism
Only slicing Q



Flash Attention

- Flash Attention v2: Loop Reordering

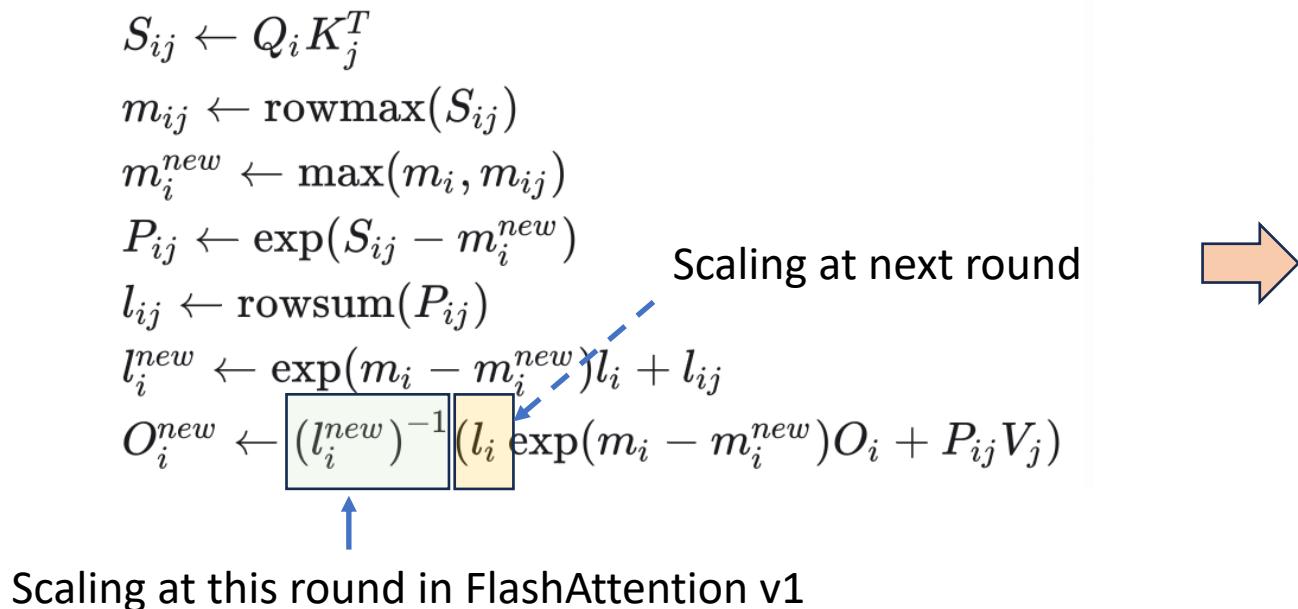


$$\begin{aligned}
 m^{(1)} &= \text{rowmax}(\mathbf{S}^{(1)}) \in \mathbb{R}^{B_r} \\
 \ell^{(1)} &= \text{rowsum}(e^{\mathbf{S}^{(1)} - m^{(1)}}) \in \mathbb{R}^{B_r} \\
 \tilde{\mathbf{O}}^{(1)} &= e^{\mathbf{S}^{(1)} - m^{(1)}} \mathbf{V}^{(1)} \in \mathbb{R}^{B_r \times d} \\
 m^{(2)} &= \max(m^{(1)}, \text{rowmax}(\mathbf{S}^{(2)})) = m \\
 \ell^{(2)} &= e^{m^{(1)} - m^{(2)}} \ell^{(1)} + \text{rowsum}(e^{\mathbf{S}^{(2)} - m^{(2)}}) = \text{rowsum}(e^{\mathbf{S}^{(1)} - m}) + \text{rowsum}(e^{\mathbf{S}^{(2)} - m}) = \ell \\
 \tilde{\mathbf{P}}^{(2)} &= \text{diag}(\ell^{(2)})^{-1} e^{\mathbf{S}^{(2)} - m^{(2)}} \\
 \tilde{\mathbf{O}}^{(2)} &= \text{diag}(e^{m^{(1)} - m^{(2)}})^{-1} \tilde{\mathbf{O}}^{(1)} + e^{\mathbf{S}^{(2)} - m^{(2)}} \mathbf{V}^{(2)} = e^{s^{(1)} - m} \mathbf{V}^{(1)} + e^{s^{(2)} - m} \mathbf{V}^{(2)} \\
 \mathbf{O}^{(2)} &= \text{diag}(\ell^{(2)})^{-1} \tilde{\mathbf{O}}^{(2)} = \mathbf{O}.
 \end{aligned}$$

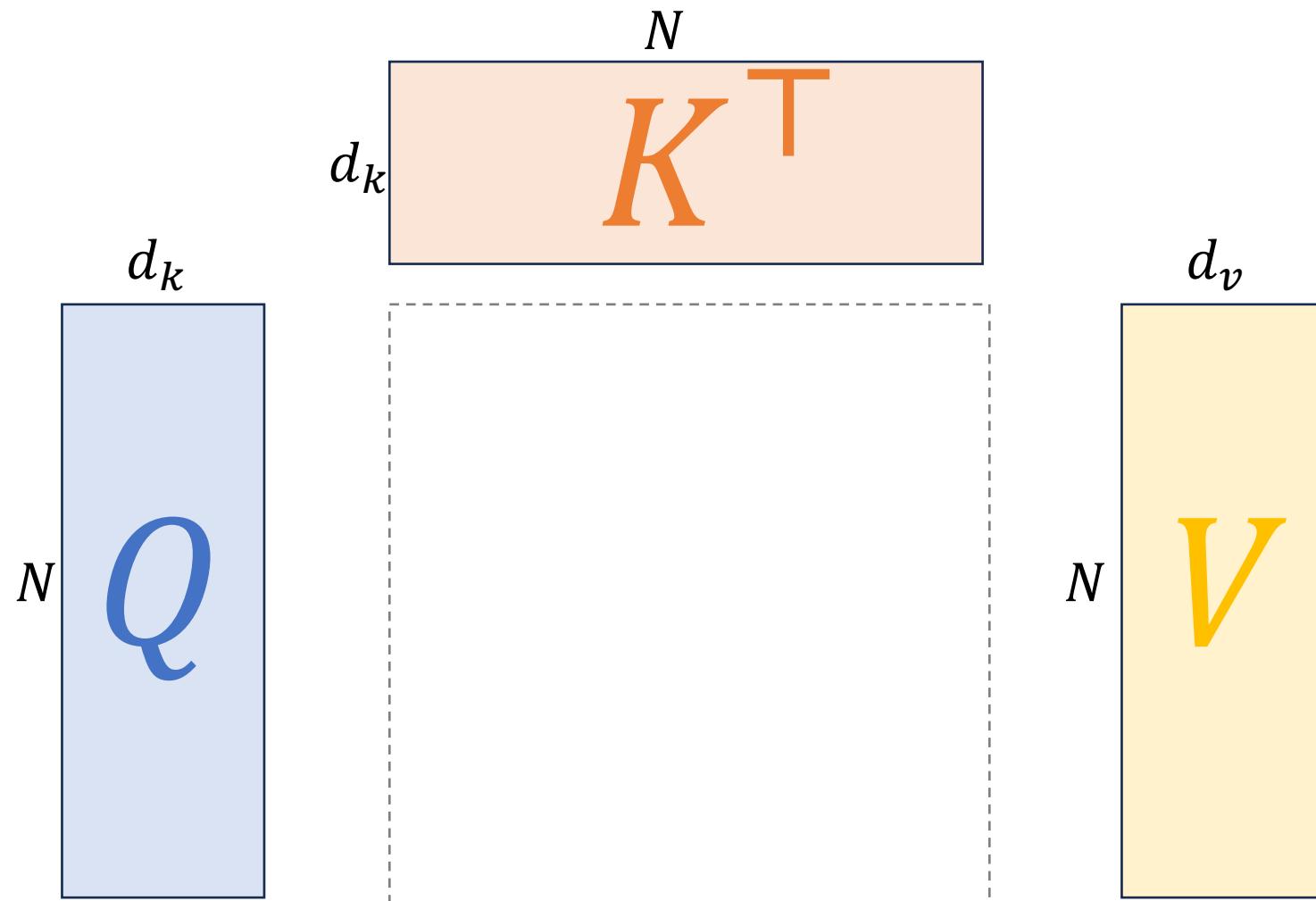
FlashAttention forward pass: key K is partitioned into two blocks and value V is also partitioned into two blocks

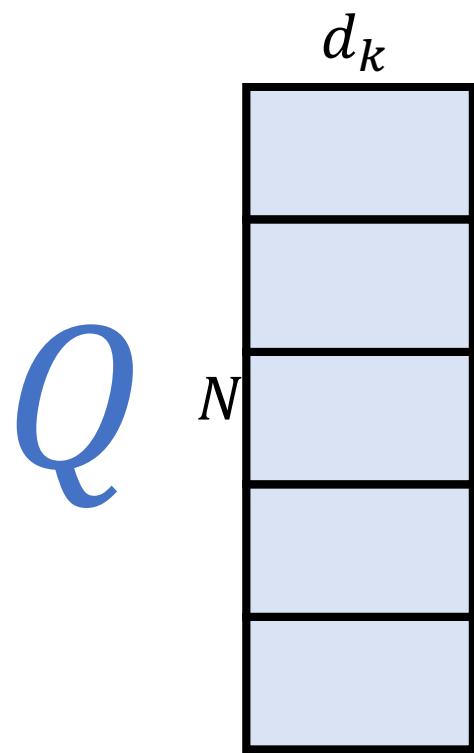
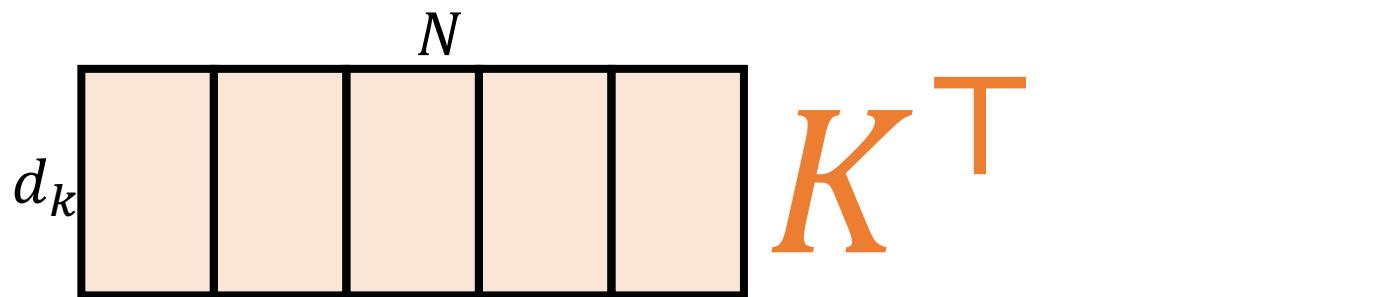
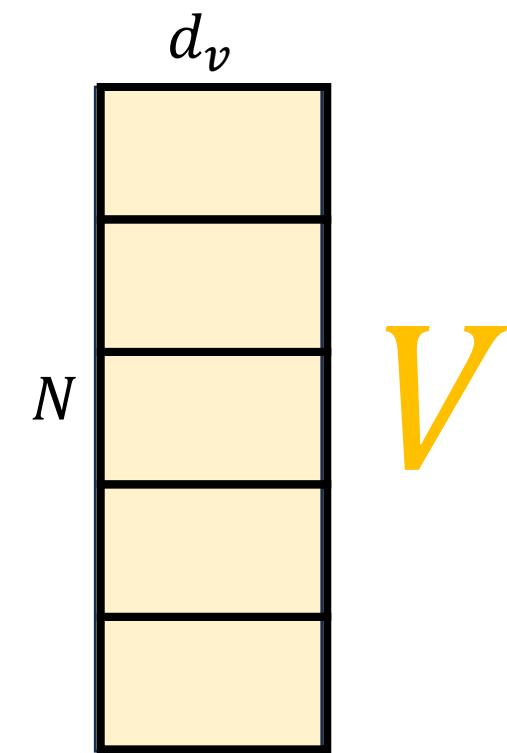
Flash Attention

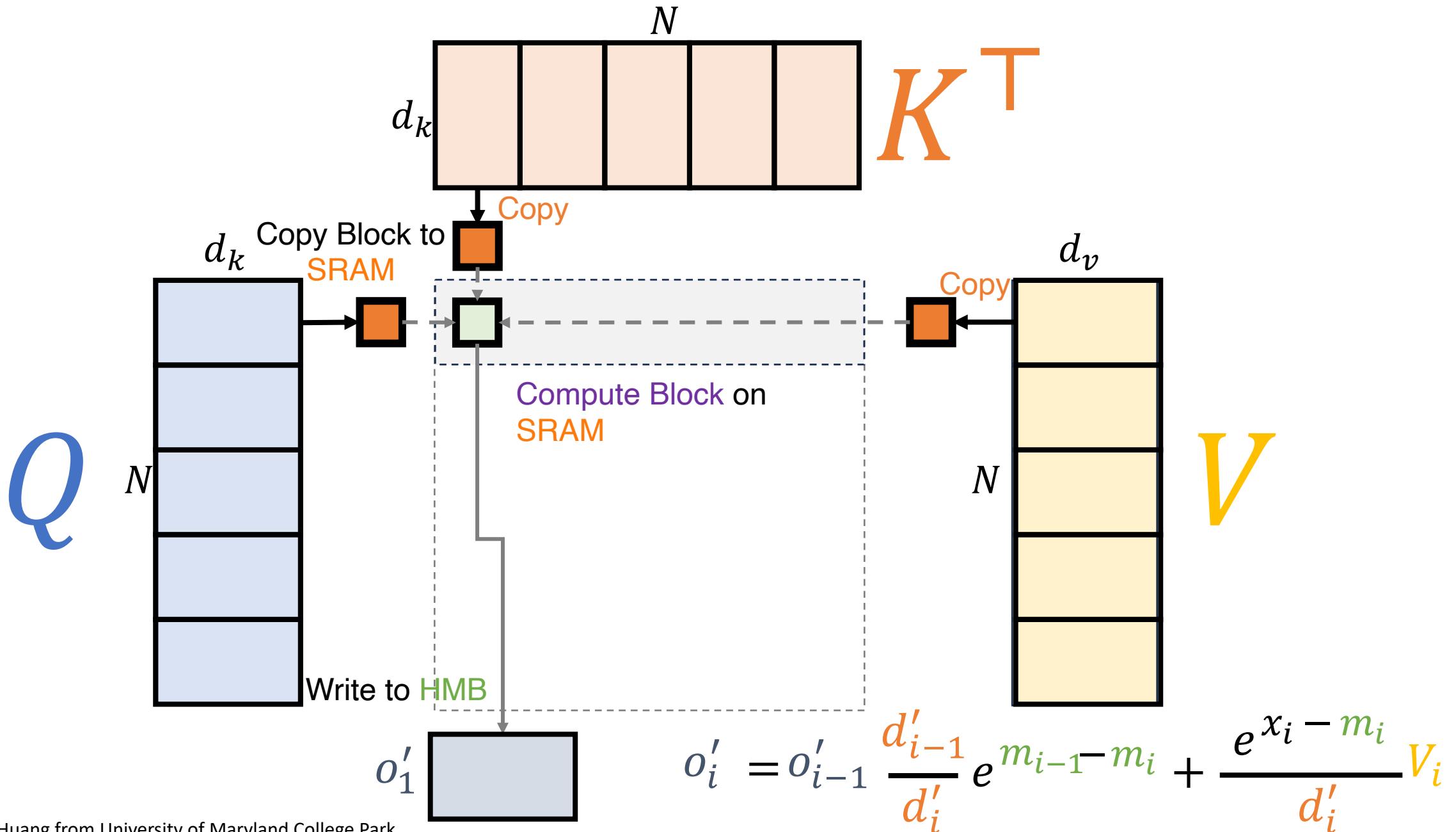
- FlashAttention v2
 - Algorithm: fewer *non-matmul* FLOPs
 - GPU is highly optimized on *matmul* (e.g. Tensor Cores)
 - NVIDIA A100 GPU: 312 TFLOPs/s of FP16/BF16 *matmul*, only 19.5 TFLOPs/s of *non-matmul* FP32

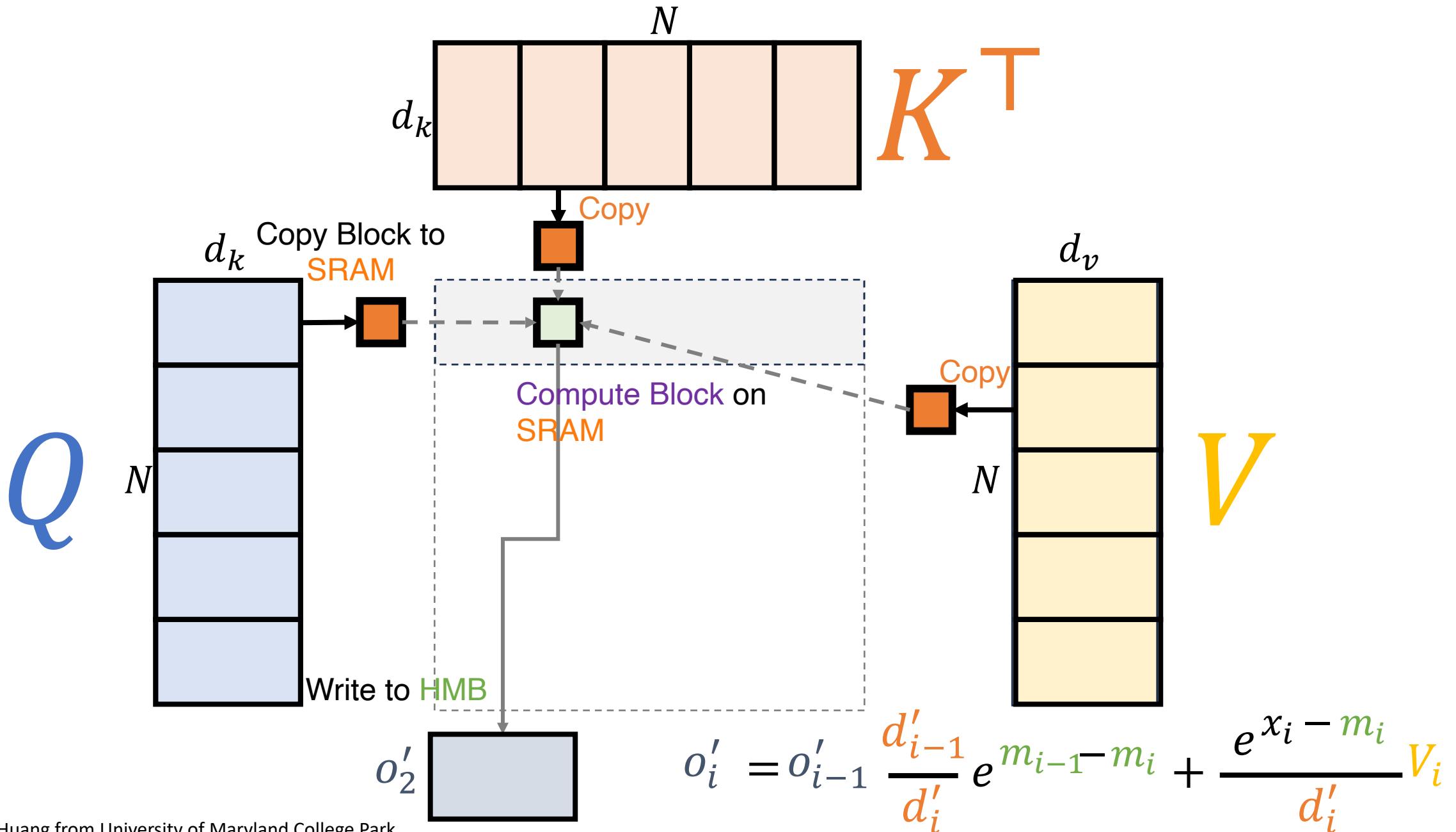


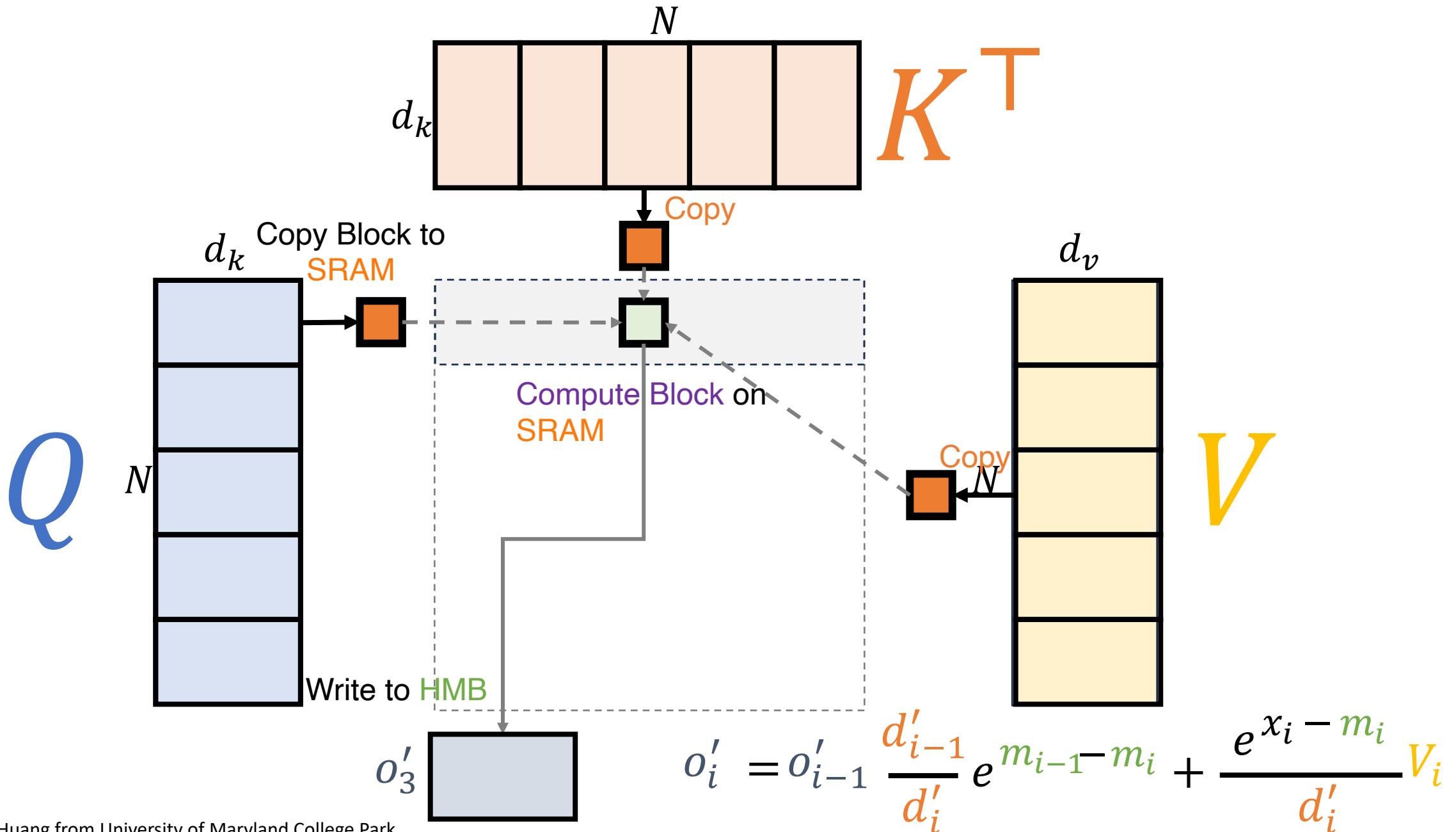
FlashAttention v2: reduce the number of rescaling ops, as well as bound-checking and causal masking operations

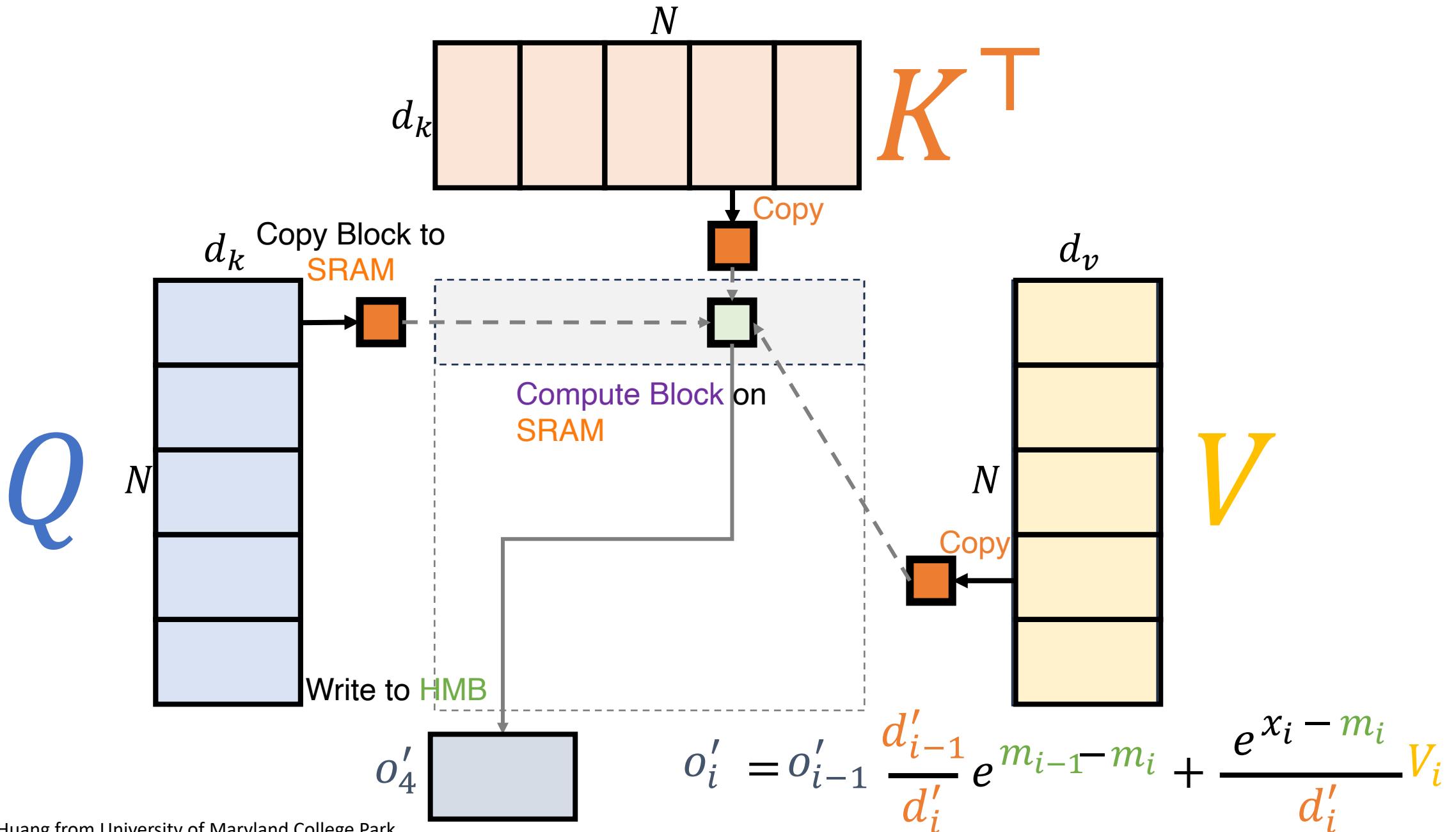


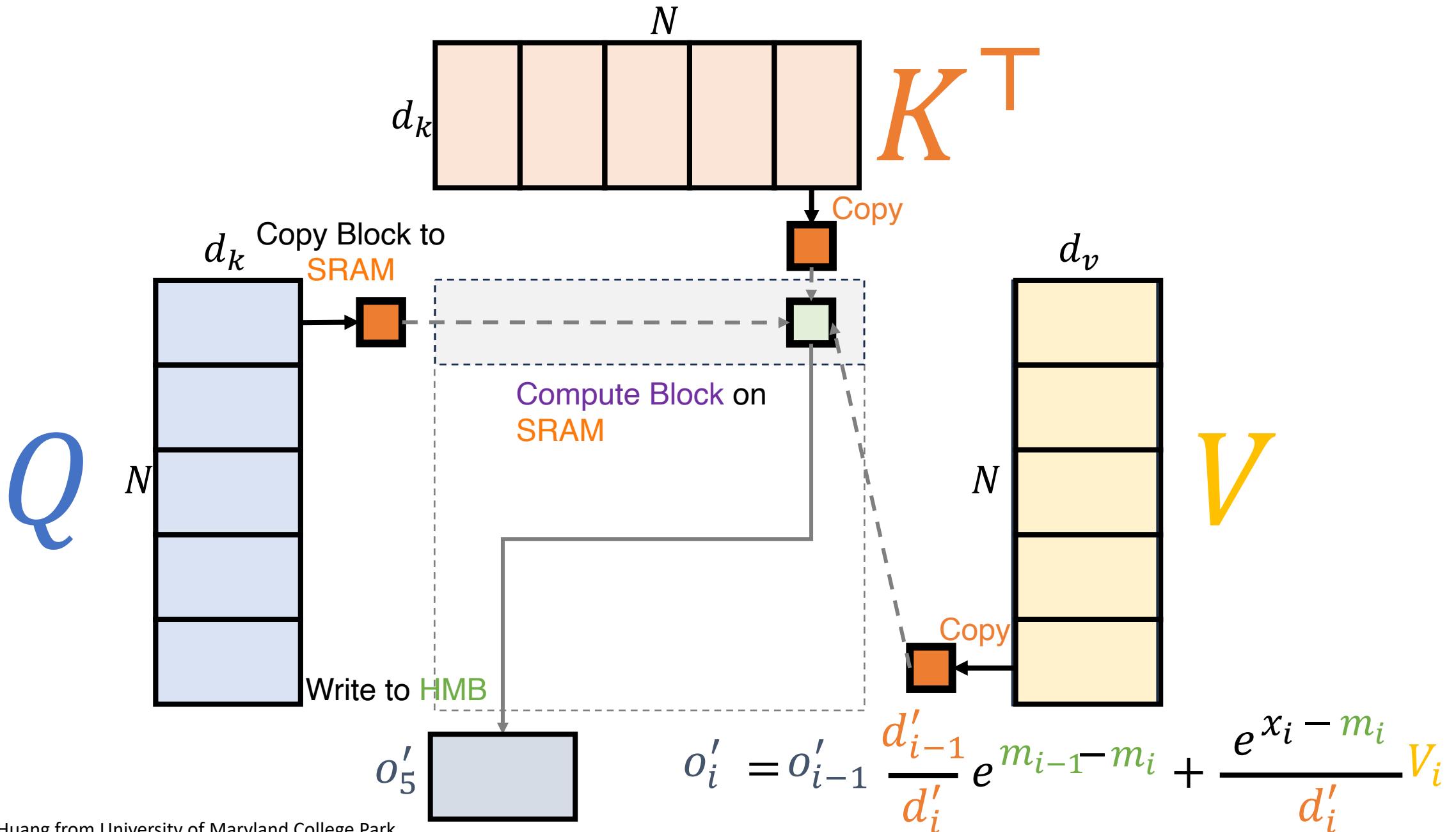


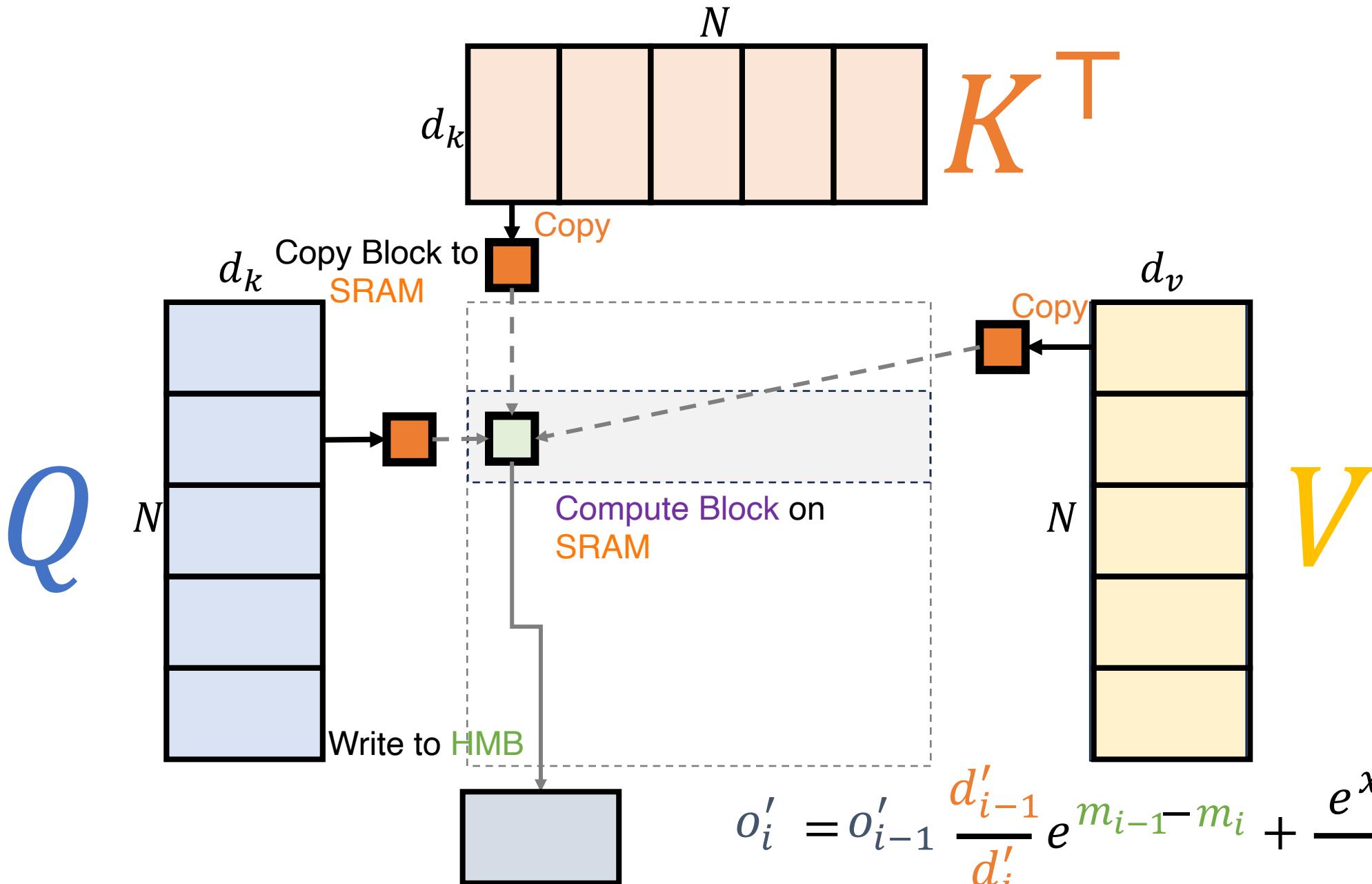




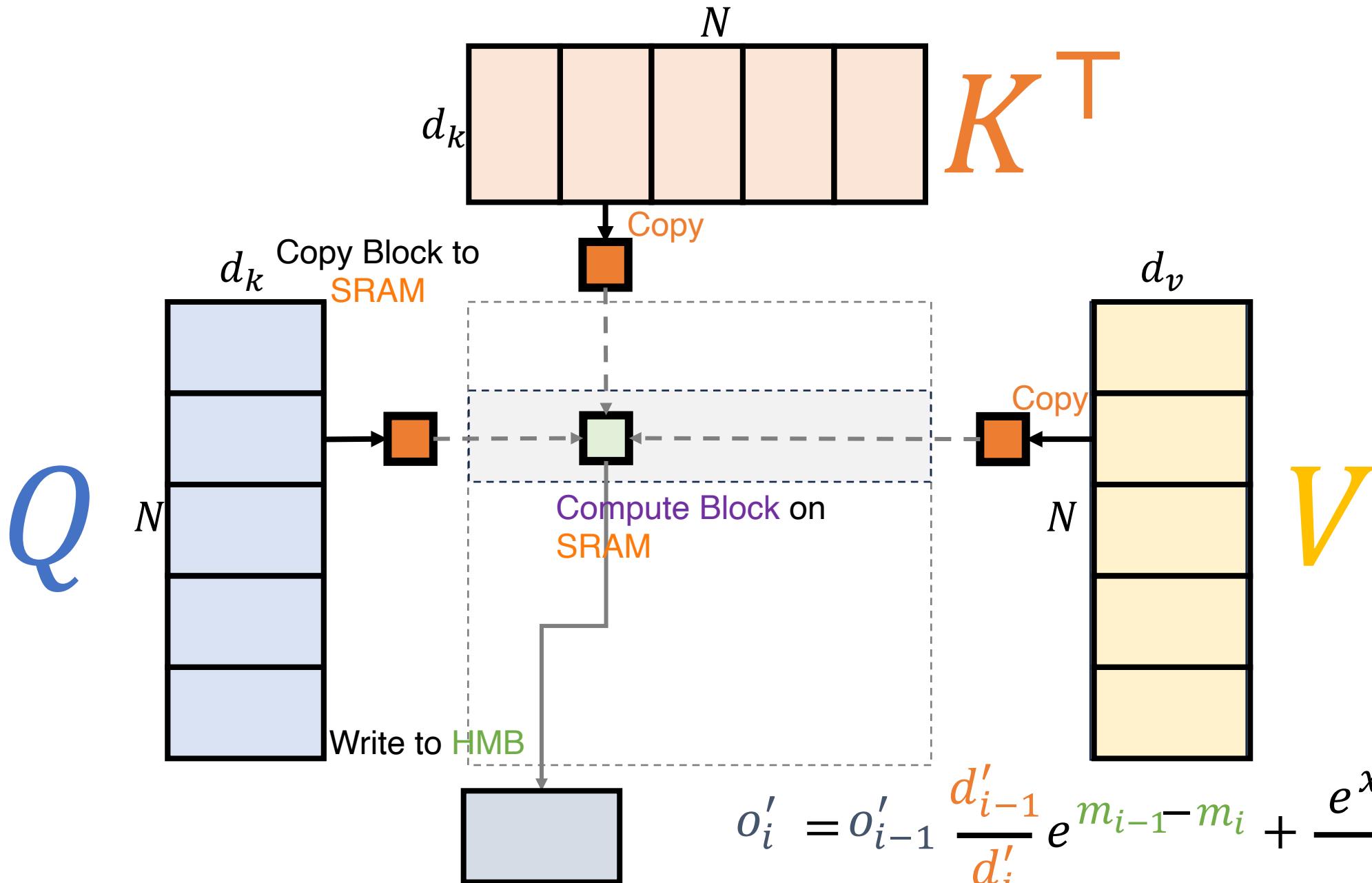


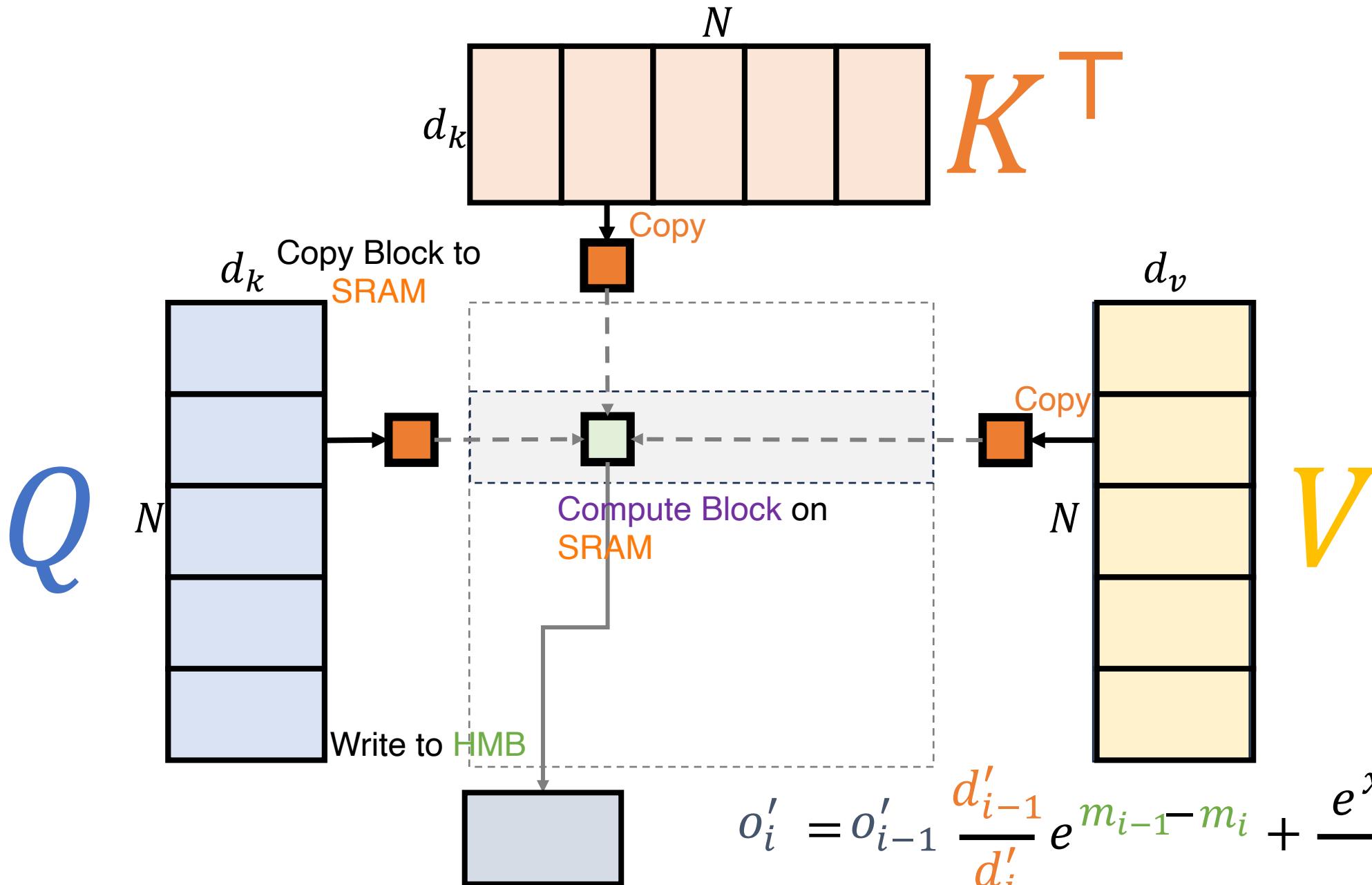


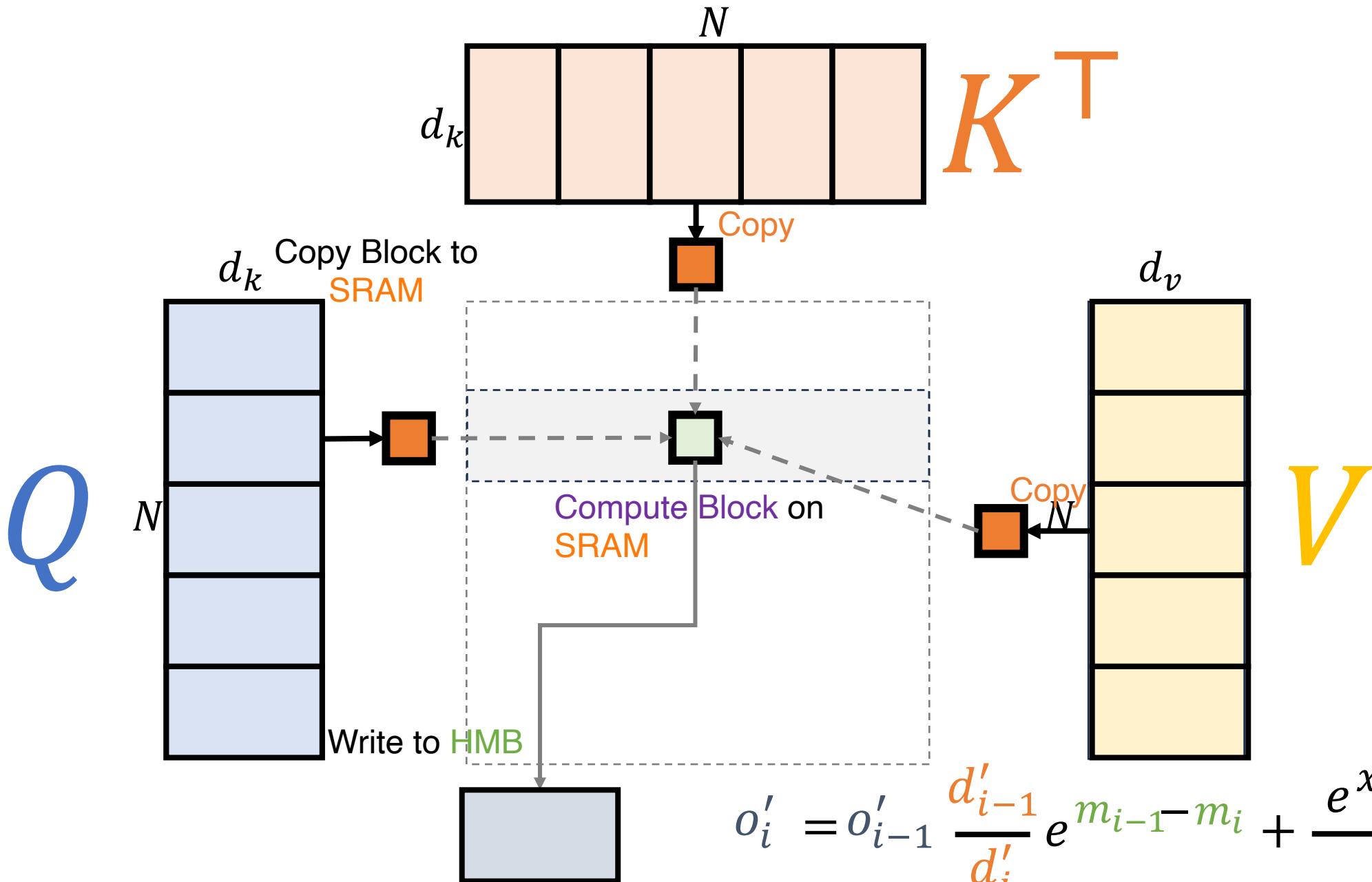


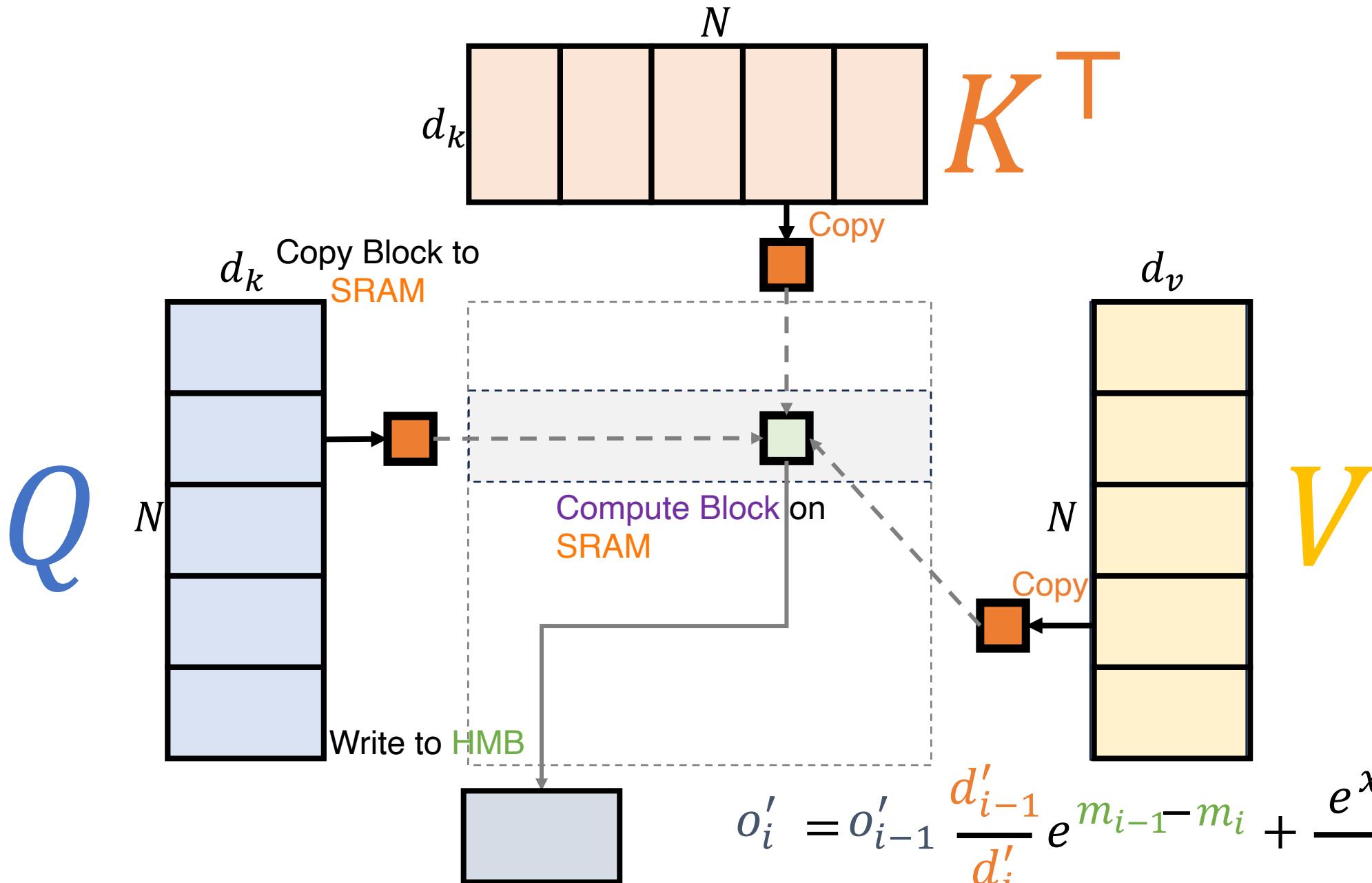


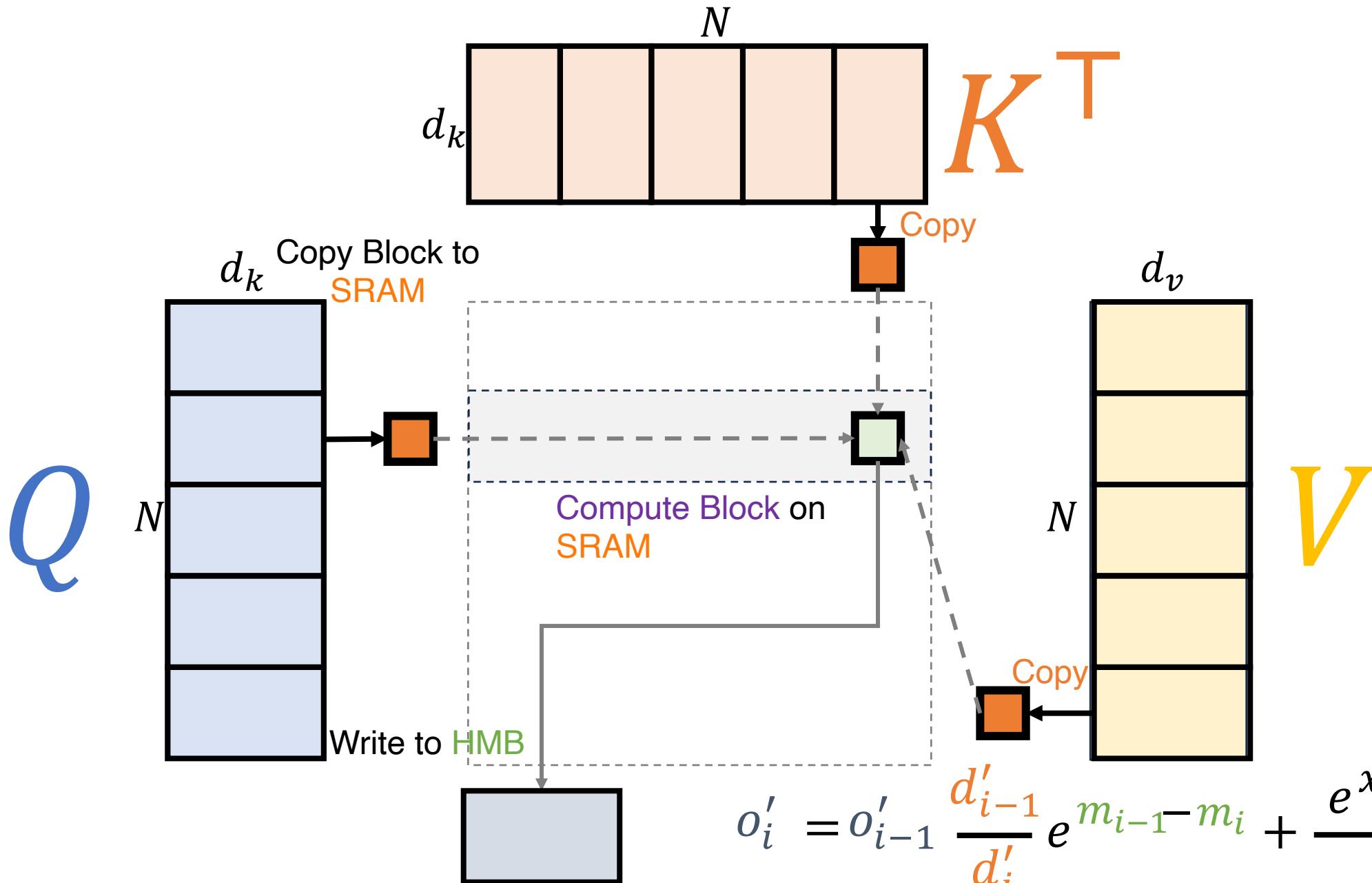
$$o'_i = o'_{i-1} \frac{d'_{i-1}}{d'_i} e^{m_{i-1} - m_i} + \frac{e^{x_i - m_i}}{d'_i} V_i$$











$$o'_i = o'_{i-1} \frac{d'_{i-1}}{d'_i} e^{m_{i-1} - m_i} + \frac{e^{x_i - m_i}}{d'_i} V_i$$

Flash Attention

Algorithm 1 FLASHATTENTION-2 forward pass

Require: Matrices $\mathbf{Q}, \mathbf{K}, \mathbf{V} \in \mathbb{R}^{N \times d}$ in HBM, block sizes B_c, B_r .

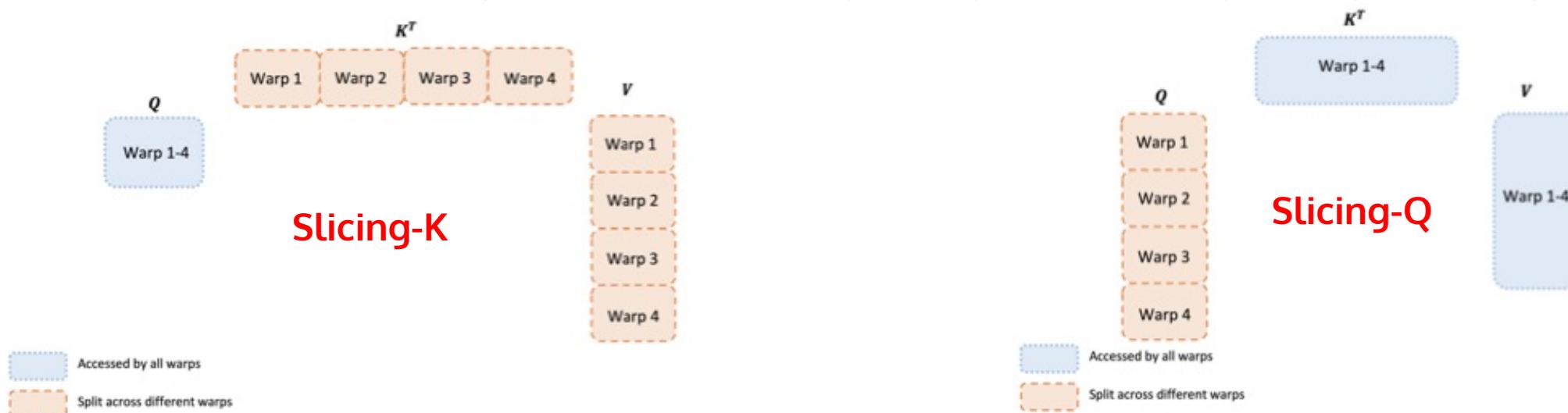
- 1: Divide \mathbf{Q} into $T_r = \left\lceil \frac{N}{B_r} \right\rceil$ blocks $\mathbf{Q}_1, \dots, \mathbf{Q}_{T_r}$ of size $B_r \times d$ each, and divide \mathbf{K}, \mathbf{V} into $T_c = \left\lceil \frac{N}{B_c} \right\rceil$ blocks $\mathbf{K}_1, \dots, \mathbf{K}_{T_c}$ and $\mathbf{V}_1, \dots, \mathbf{V}_{T_c}$, of size $B_c \times d$ each.
- 2: Divide the output $\mathbf{O} \in \mathbb{R}^{N \times d}$ into T_r blocks $\mathbf{O}_i, \dots, \mathbf{O}_{T_r}$ of size $B_r \times d$ each, and divide the logsumexp L into T_r blocks L_i, \dots, L_{T_r} of size B_r each.
- 3: **for** $1 \leq i \leq T_r$ **do**
 - 4: Load \mathbf{Q}_i from HBM to on-chip SRAM.
 - 5: On chip, initialize $\mathbf{O}_i^{(0)} = (0)_{B_r \times d} \in \mathbb{R}^{B_r \times d}, \ell_i^{(0)} = (0)_{B_r} \in \mathbb{R}^{B_r}, m_i^{(0)} = (-\infty)_{B_r} \in \mathbb{R}^{B_r}$.
 - 6: **for** $1 \leq j \leq T_c$ **do**
 - 7: Load $\mathbf{K}_j, \mathbf{V}_j$ from HBM to on-chip SRAM.
 - 8: On chip, compute $\mathbf{S}_i^{(j)} = \mathbf{Q}_i \mathbf{K}_j^T \in \mathbb{R}^{B_r \times B_c}$.
 - 9: On chip, compute $m_i^{(j)} = \max(m_i^{(j-1)}, \text{rowmax}(\mathbf{S}_i^{(j)})) \in \mathbb{R}^{B_r}, \tilde{\mathbf{P}}_i^{(j)} = \exp(\mathbf{S}_i^{(j)} - m_i^{(j)}) \in \mathbb{R}^{B_r \times B_c}$ (pointwise), $\ell_i^{(j)} = e^{m_i^{(j-1)} - m_i^{(j)}} \ell_i^{(j-1)} + \text{rowsum}(\tilde{\mathbf{P}}_i^{(j)}) \in \mathbb{R}^{B_r}$.
 - 10: On chip, compute $\mathbf{O}_i^{(j)} = \text{diag}(e^{m_i^{(j-1)} - m_i^{(j)}})^{-1} \mathbf{O}_i^{(j-1)} + \tilde{\mathbf{P}}_i^{(j)} \mathbf{V}_j$.
 - 11: **end for**
 - 12: On chip, compute $\mathbf{O}_i = \text{diag}(\ell_i^{(T_c)})^{-1} \mathbf{O}_i^{(T_c)}$.
 - 13: On chip, compute $L_i = m_i^{(T_c)} + \log(\ell_i^{(T_c)})$.
 - 14: Write \mathbf{O}_i to HBM as the i -th block of \mathbf{O} .
 - 15: Write L_i to HBM as the i -th block of L .
- 16: **end for**
- 17: Return the output \mathbf{O} and the logsumexp L .

Flash Attention v2: Loop Reordering

- Maintaining the same order of I/O complexity: $O(N^2 d^2 M^{-1})$
- Reducing read/write of O_i : write O_i to HBM after traversing all K/V blocks at the inner loop

Flash Attention

- FlashAttention v2
 - Better Work Partitioning
 - A thread block is partitioned into multiple warps (32 threads per warp, 4~8 warps per block)



- Slicing K/V at each Warp while maining complete Q
- QK^T has four partitions, and $(QK^T)V$ needs REDUCTION (write to shared memory, synchronize, and add-up intermediate results)
- Slicing Q while keeping K/V accessible by all Warps
- Each warp performs matrix multiply to obtain a slice of QK^T , and no intra-block communication

Flash Attention

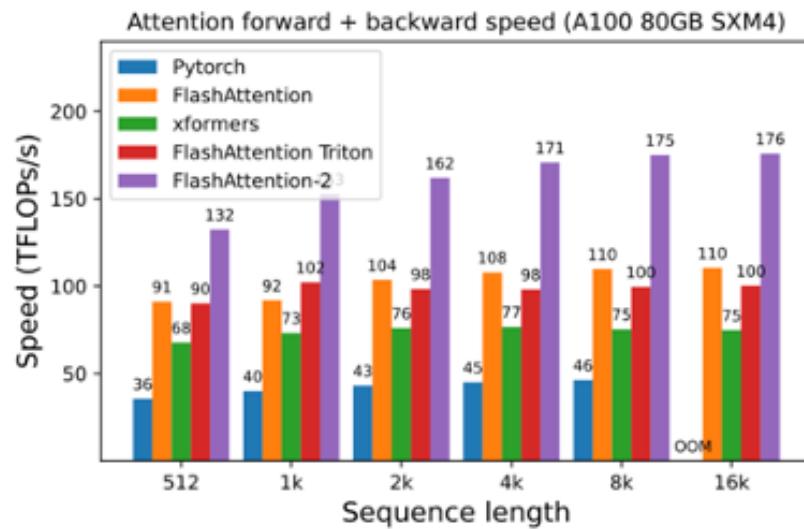
- FlashAttention v2
 - Better Work Partitioning
 - A thread block is partitioned into multiple warps (32 threads per warp, 4~8 warps per block)

FlashAttention V1

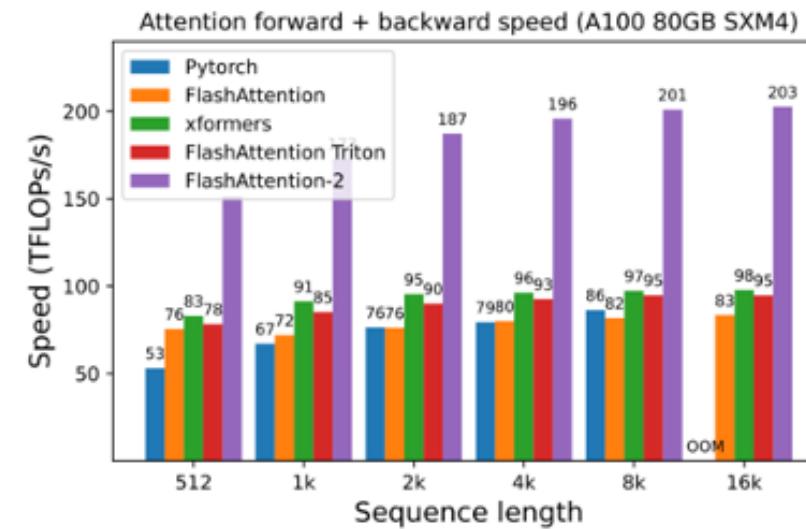
FlashAttention V2

Flash Attention

- FlashAttention v2
 - Performance speedup



(a) Without causal mask, head dimension 64

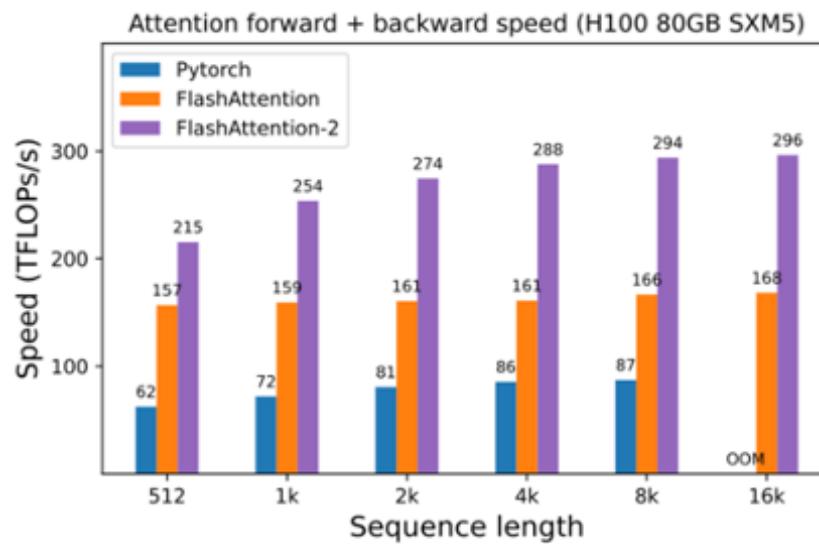


(b) Without causal mask, head dimension 128

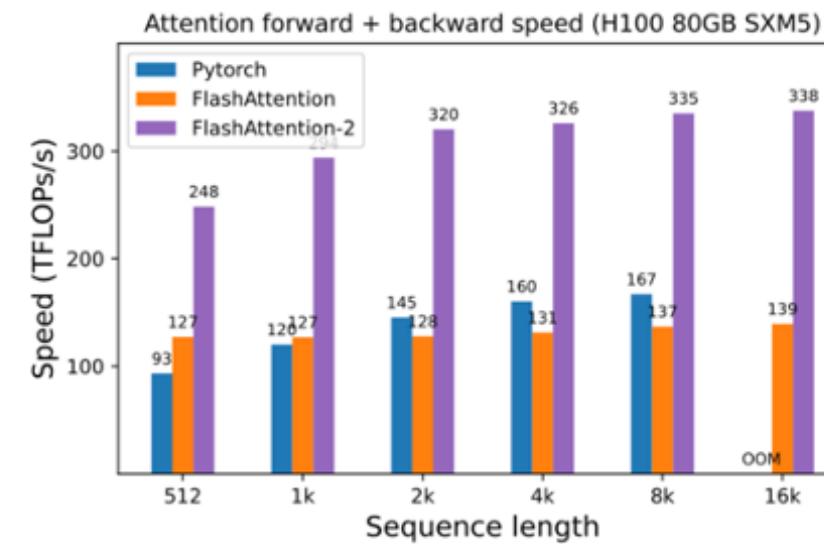
Attention forward + backward speed on A100 GPU

Flash Attention

- FlashAttention v2
 - Performance speedup



(a) Without causal mask, head dimension 64

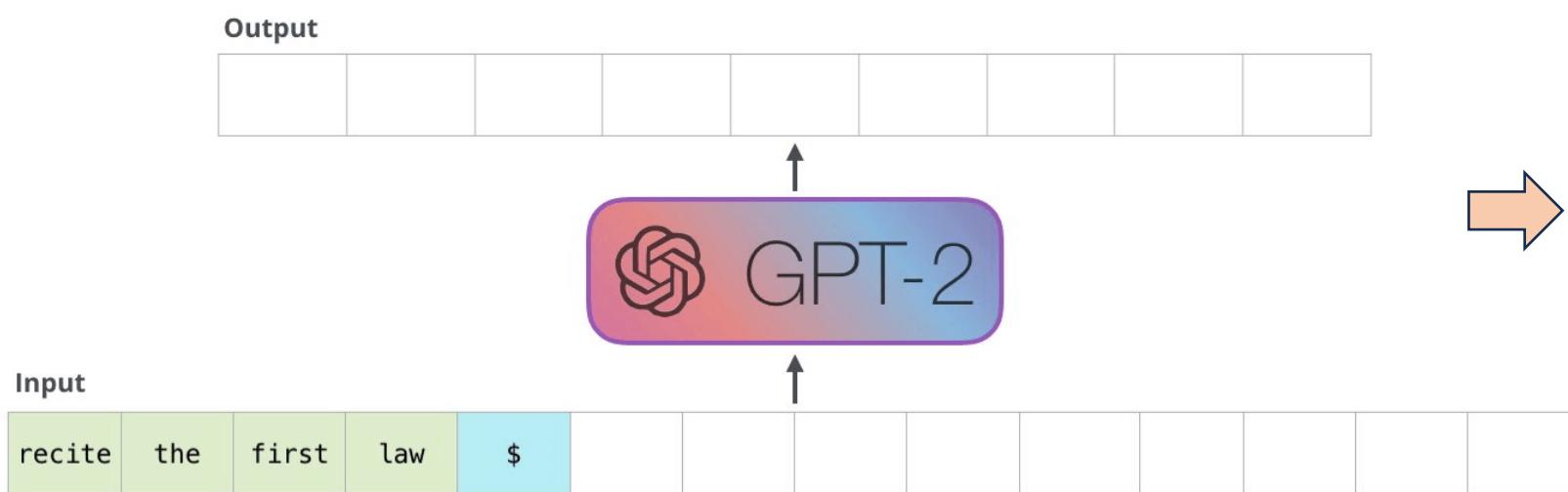


(b) Without causal mask, head dimension 128

Attention forward + backward speed on H100 GPU

Flash Attention

- Flash Decoding
 - New challenges in autoregressive decoding

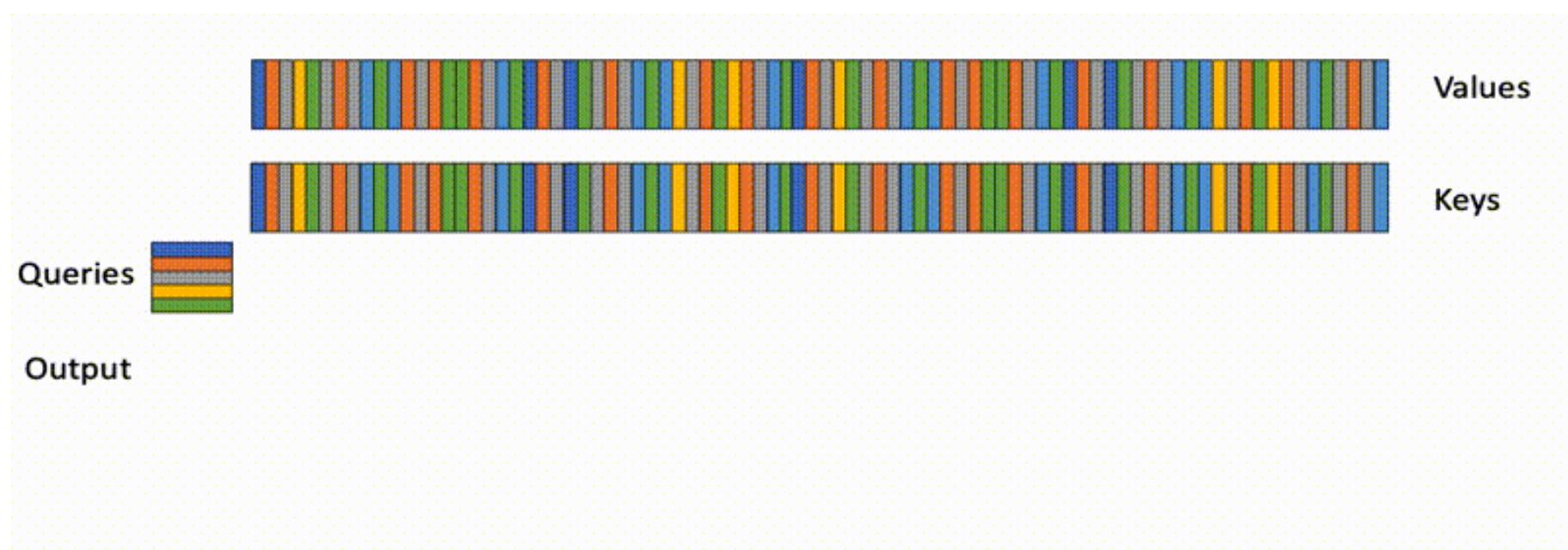


- Key (K) and Value (V) keep growing to be extraordinarily large
 - Out of Memory error
 - Swapping to CPU memory which is very slow
- Truncating the input causes poor performance

Query (Q) length is always 1, i.e. the newly generated token

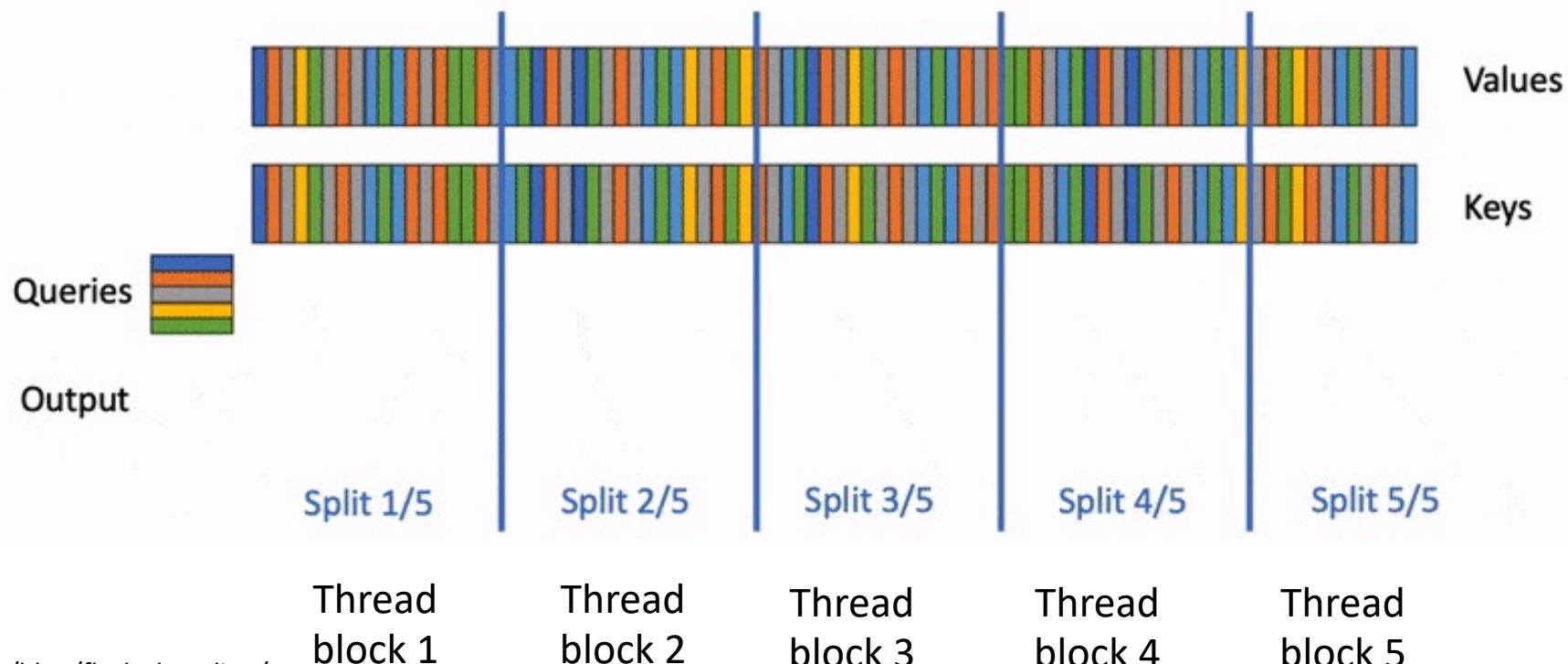
Flash Attention

- Flash Decoding
 - Low efficiency due to small Q (i.e. sequence length of 1 in decoding)



Flash Attention

- Flash Decoding
 - Sharding Key and Value matrices (e.g. 5 pieces) in order to create many more thread blocks

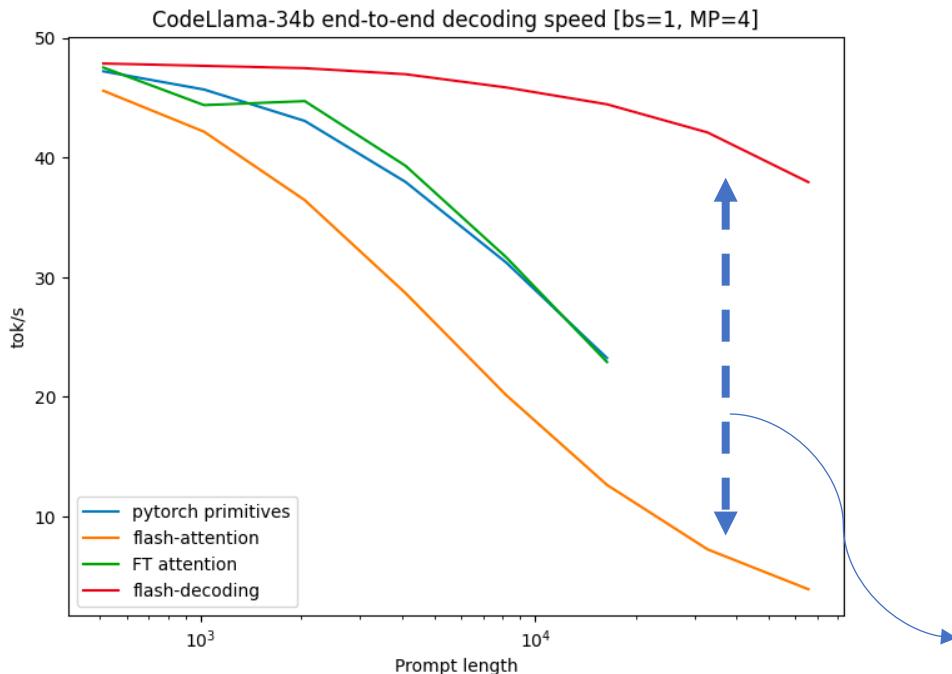


Flash Attention

- Flash Decoding
 - Computing attention scores with K/V splits using FlashAttention v1/v2
 - Only obtaining local ***max*** and local ***sum***
 - Output O not properly scaled
 - Launching an independent ***REDUCE*** kernel
 - Obtaining global ***max*** and global ***sum***
 - Rescaling local O to obtain the final output

Flash Attention

- Flash Decoding

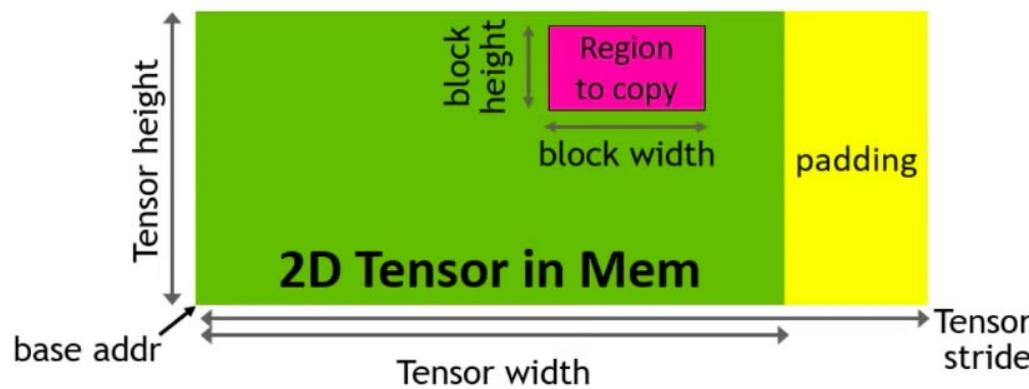
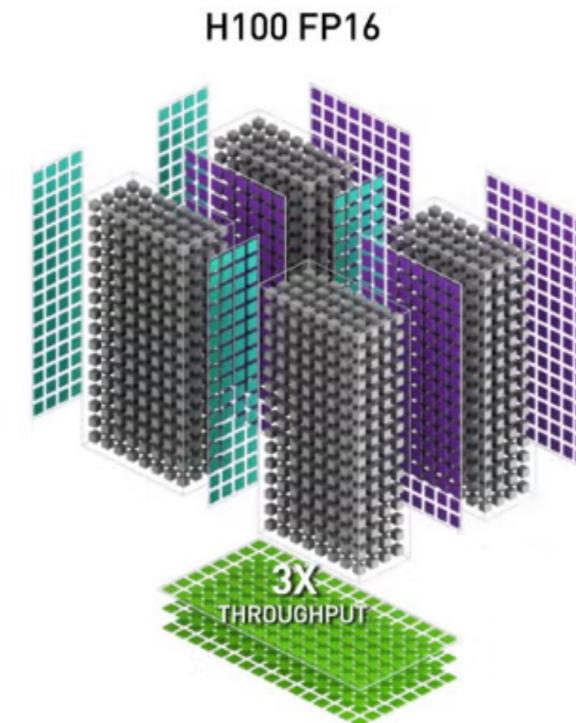


Setting \ Algorithm	PyTorch Eager	Flash-Attention v2.0.9	Flash-Decoding
B=256, seqlen=256	3058.6	390.5	63.4
B=128, seqlen=512	3151.4	366.3	67.7
B=64, seqlen=1024	3160.4	364.8	77.7
B=32, seqlen=2048	3158.3	352	58.5
B=16, seqlen=4096	3157	401.7	57
B=8, seqlen=8192	3173.1	529.2	56.4
B=4, seqlen=16384	3223	582.7	58.2
B=2, seqlen=32768	3224.1	1156.1	60.3
B=1, seqlen=65536	1335.6	2300.6	64.4
B=1, seqlen=131072	2664	4592.2	106.6

Flash Decoding versus Flash Attention

Flash Attention v3

- **Hardware improvement** (only for your reference)
 - TMA (Tensor Memory Accelerator) Warpgroup Matrix Multiply-Accumulate



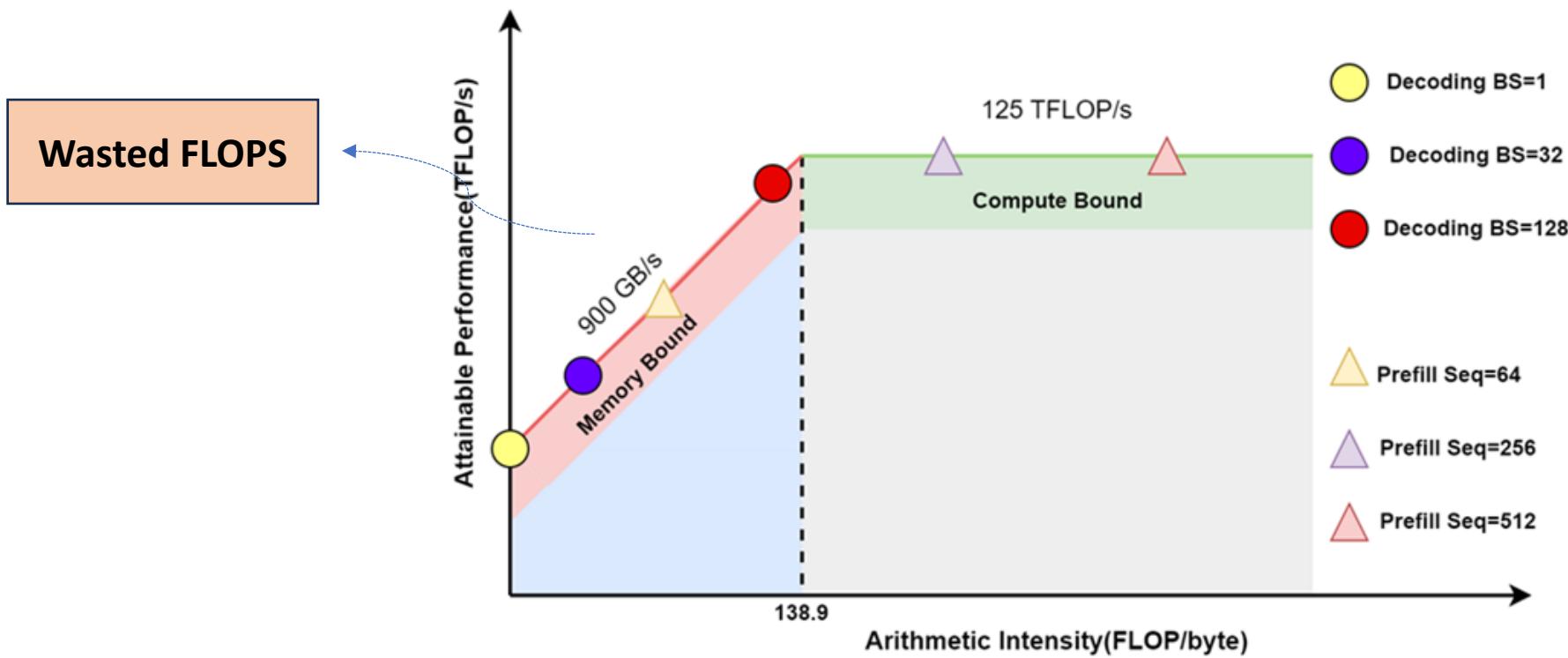
- **Asynchrony**
 - Overlap overall computation and data movement via warp-specialization and interleave block-wise ***matmul*** and ***softmax*** operations

Inference Optimization: Outline

- Overview
- Attention Computation Optimization
 - Sparse Attention
 - Linear Attention
 - Flash Attention
- **Continuous Batching**
- KV Cache Optimization
- Speculative Decoding
- Distributed Serving

Batching to Meet Compute-Bound

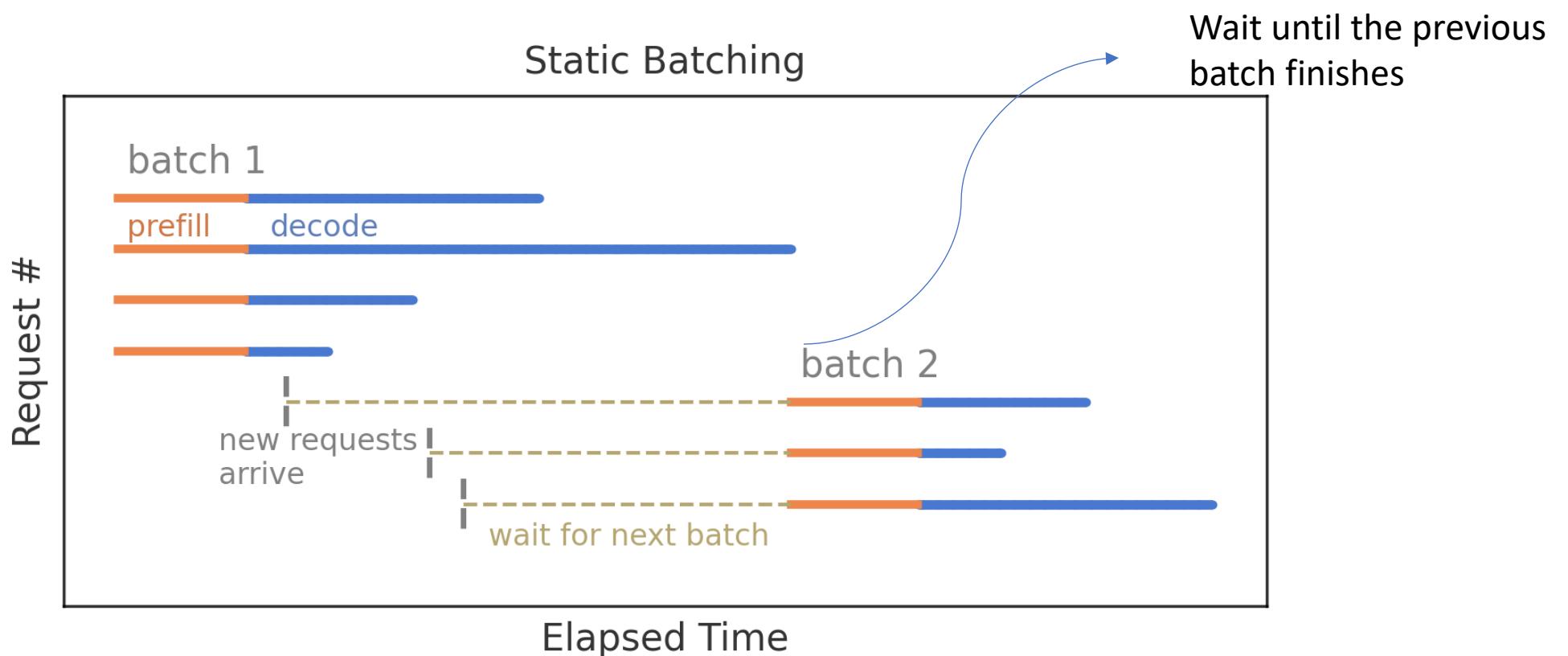
- Why batching multiple requests?
 - Generating tokens for a large number of prompts to match the compute bound



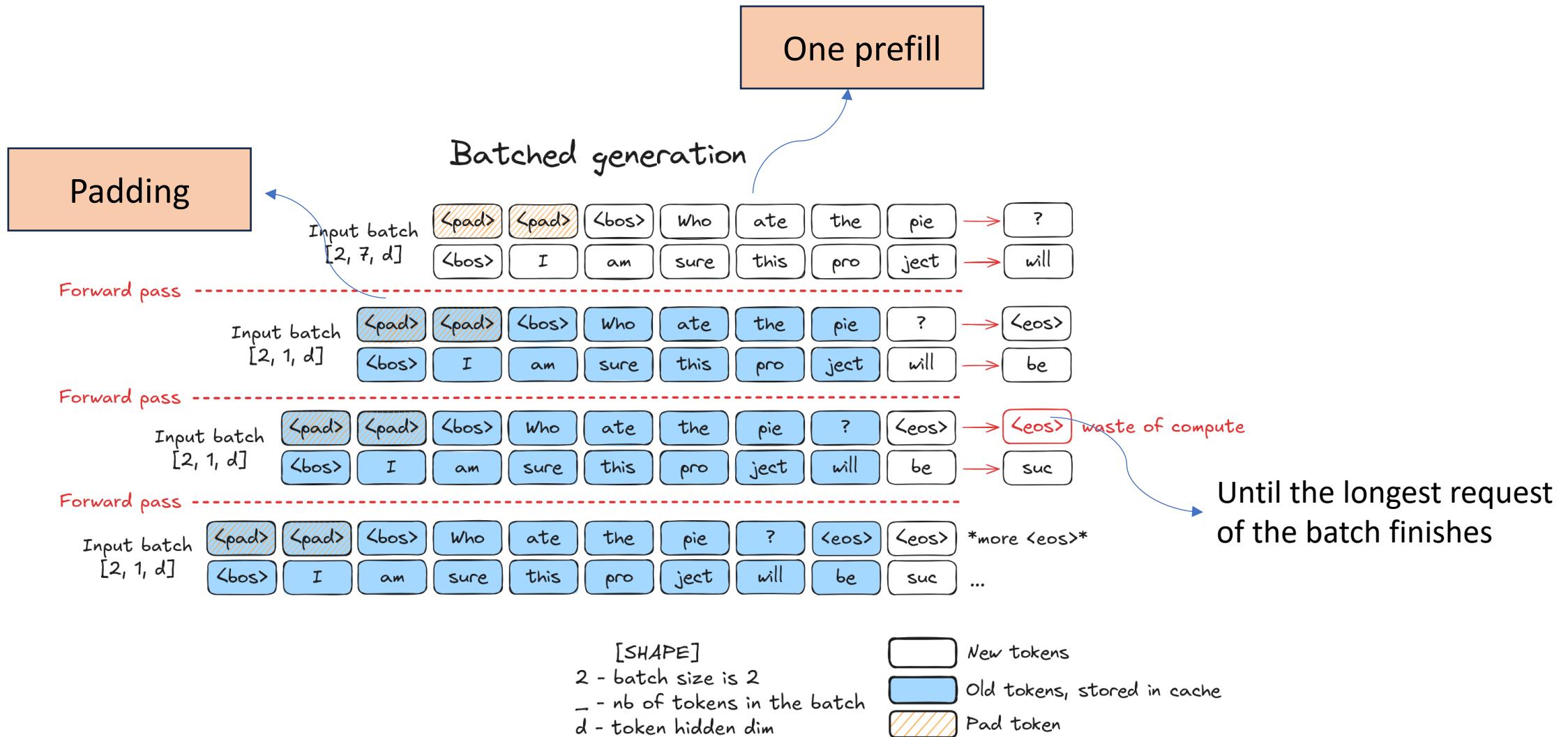
Roofline model of NVIDIA V100 GPU

Static Batching

- Naively serving multiple requests simultaneously
 - Unequal input sequence lengths, unknown output sequence lengths

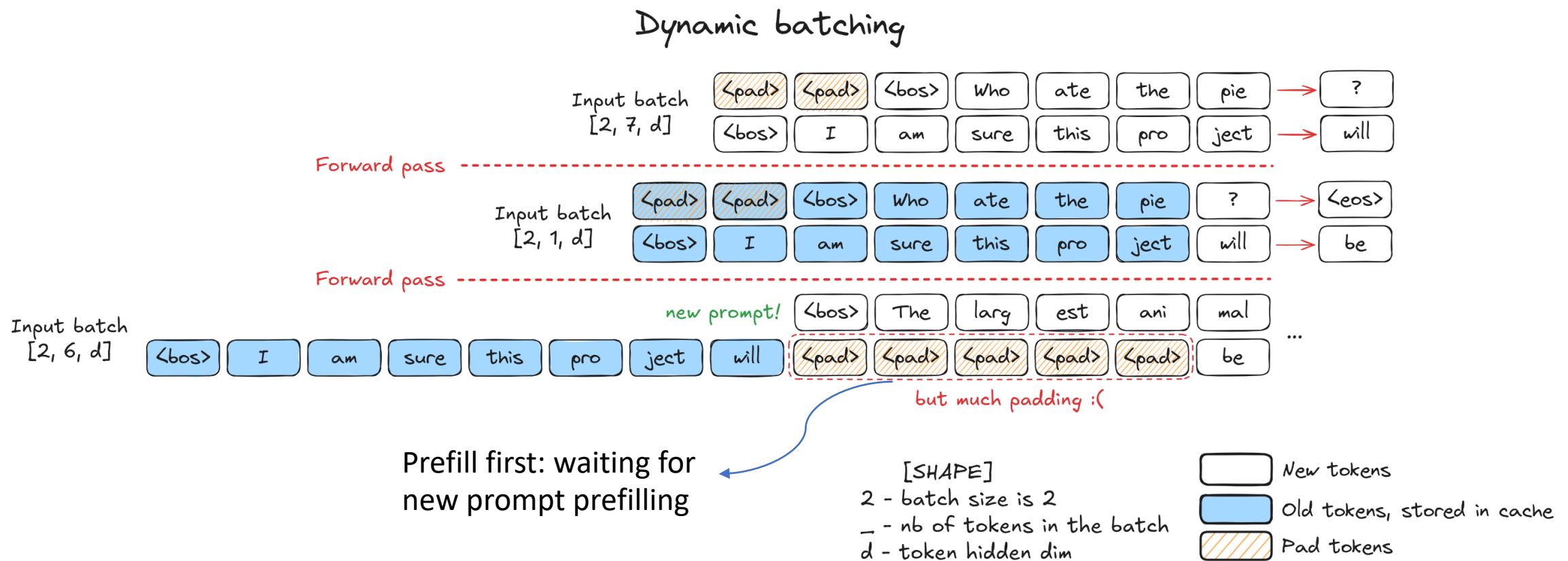


Static Batching



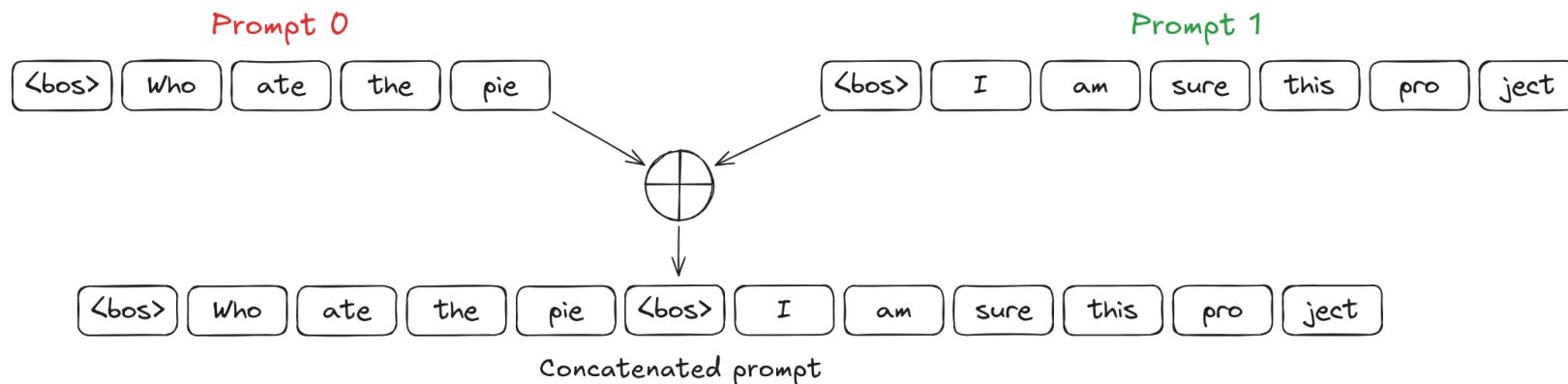
Dynamic Batching

- Insert an inference request in the queue



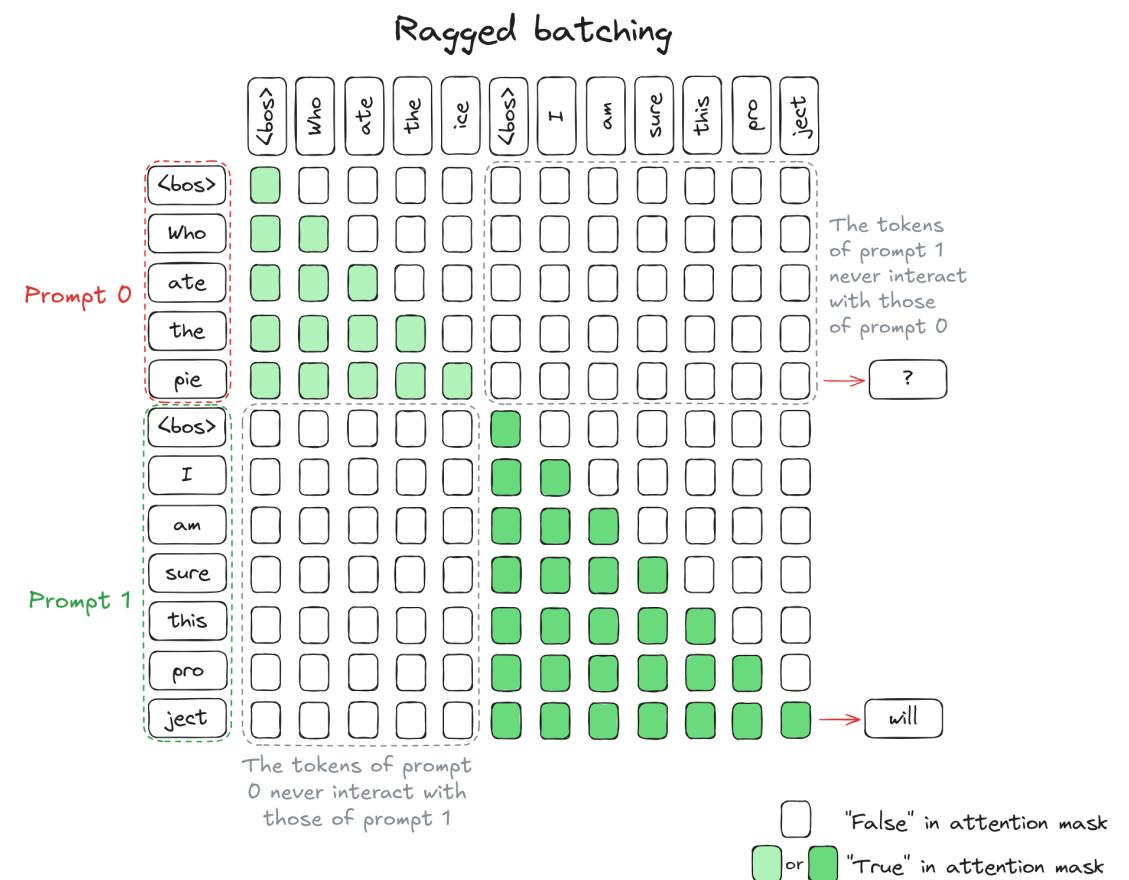
Idea Batching

- Concatenating prompts
 - **Decode** is equivalent to **prefill** with sequence length of 1
 - **Decode** and **Prefill** of different prompts operate simultaneously without bubbles



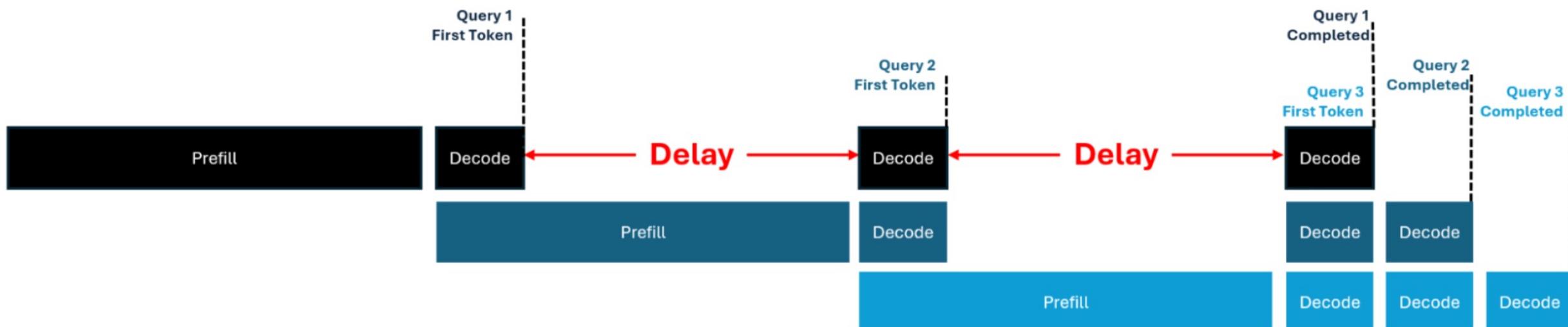
Continuous Batching

- Continuous batching = ragged batching + ideal dynamic batching
 - Attention scores of tokens belonging to *prompt 0* and *prompt 1* should not be computed together
 - Ragged batching because sequence lengths are 'ragged' or uneven, no need for padding tokens



Continuous Batching

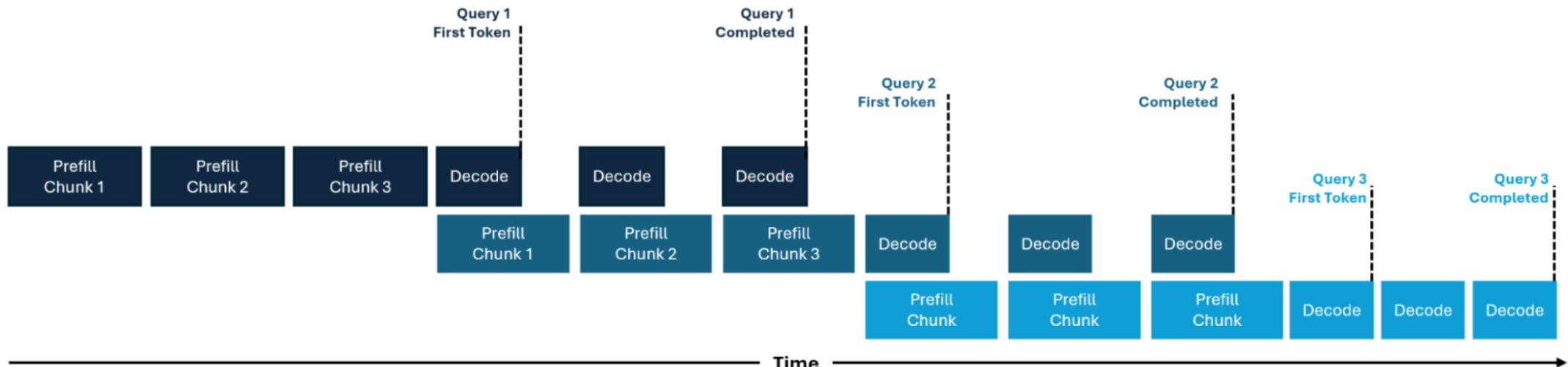
- Question remains unsolved: how to make *prefill* of new requests and *decode* of existing requests operate *in parallel*?



Continuous batching without chunked prefill

Chunked Prefill

- Chunked Prefill
 - **Elastic Scheduling**: split the entire prompt into smaller chunks: more scheduling flexibility and enables mixing prefill and decode.
 - **Decode-Maximal Batching**: combine a single prefill chunk with multiple decode requests in the same batch, allowing decode operations to "piggyback" on the more compute-intensive prefill operations



Chunked Prefill

- Combined together to acquire a global view of complete prefill

	k0	k1	k2	k3
q0	1	-	-	-
q1	1	1	-	-
q2	1	1	1	-
q3	1	1	1	1

attention mask during first chunk prefill

Mask is a lower triangular matrix

K/V being loaded 2 times by late

	k0	k1	k2	k3	k4	k5	k6	k7
q4	1	1	1	1	1	-	-	-
q5	1	1	1	1	1	1	-	-
q6	1	1	1	1	1	1	1	-
q7	1	1	1	1	1	1	1	1

attention mask during second chunk prefill

Mask is a trapezoid matrix

K/V being loaded 1 time

	k0	k1	k2	k3	k4	k5	k6	k7	k8	k9	k10	k11
q8	1	1	1	1	1	1	1	1	1	-	-	-
q9	1	1	1	1	1	1	1	1	1	1	-	-
q10	1	1	1	1	1	1	1	1	1	1	1	-
q11	1	1	1	1	1	1	1	1	1	1	1	1

attention mask during third chunk prefill

Mask is a trapezoid matrix

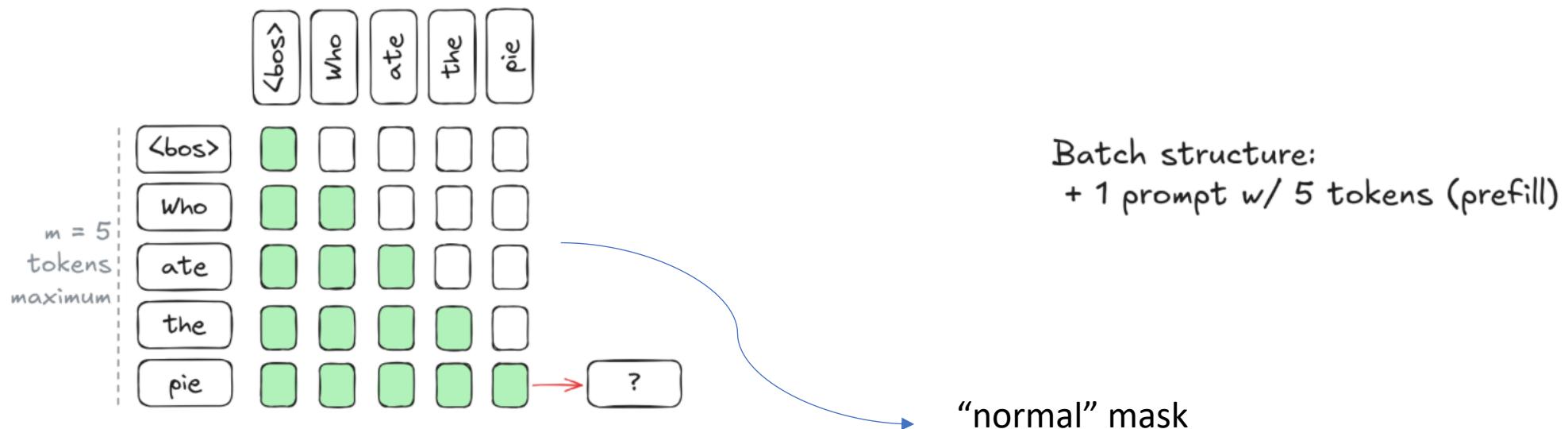
Attention mask matrices for successive prefill chunks

Continuous Batching

- Continuous batching = ragged batching + dynamic batching

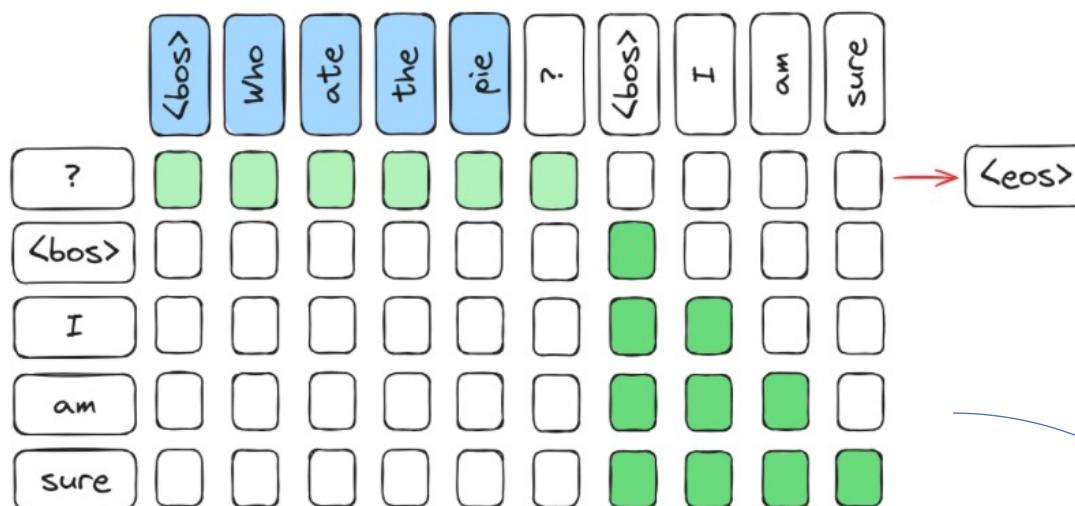
Continuous batching

Initial prompts: ["Who ate the pie", "I am sure this project", "The largest animal"]



Continuous Batching

- Continuous batching = ragged batching + dynamic batching



Forward pass

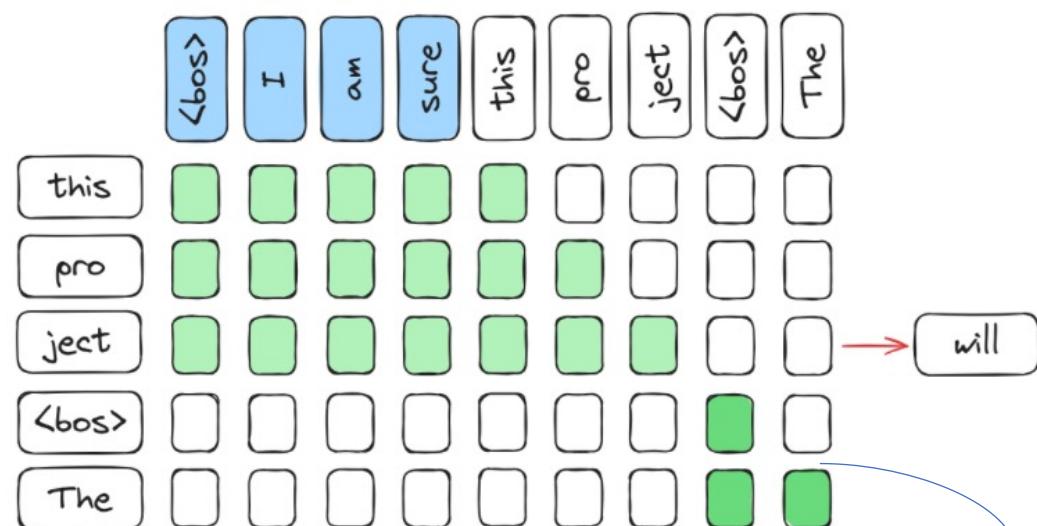
Batch structure:

- + 1 prompt w/ 1 tokens (decode)
- + 1 prompt w/ 4 tokens (chunked prefill)

"ragged" mask

Continuous Batching

- Continuous batching = ragged batching + dynamic batching



Batch structure:

- + 1 prompt w/ 3 tokens (end of chunked prefill)
- + 1 prompt w/ 2 tokens (chunked prefill)

“ragged” mask

Thanks!

