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Disclaimer

Machine learning systems is a broad and rapidly evolving field. 
The course material has been developed using a broad 
spectrum of resources, including research papers, lecture slides, 
blogposts, research talks, tutorial videos, and other materials 
shared by the research community. We sincerely appreciate 
their efforts and assistance, and try our best to cite the sources of 
the materials used in this course.



Distributed LLM Training: Outline

• Transformer: A Quick Overview

• Data Parallelism
• Parameter-Server
• All-Reduce

• Memory Optimization

• Model Parallelism
• Pipeline Parallelism
• Tensor Parallelism
• Sequence Parallelism

• Mixture of Experts



Transformer Overview

• Transformer architecture

A minimalist description of Transformer *

What to include
• Computation optimization
• Communication optimization
• Storage optimization
pertinent to model training and inference

* https://re-cinq.com/blog/llm-architectures

What NOT to include

• Model architecture

• Downstream applications

• Exhausting system optimization techniques

• Detailed engineering/programming  efforts



KV Cache, Model 
Parallelism

Flash Attention, 
Efficient Attention, 
Model Parallelism

MoE, Attention-FFN 
Disaggregation

Speculative 
Decoding

Parallelism Data-, Model-, Expert-Parallelism, 
Distributed Serving
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Token 
Embedding

Token vectors

Tokens

𝑊! 𝑊! 𝑊! 𝑊! 𝑊! 𝑊! 𝑊!

Feed
Forward

Feed
Forward

Feed
Forward

Feed
Forward

Feed
Forward

Feed
Forward

Feed
Forward

I bought an apple and an orange

Self-Attention

* LayerNorm and residual omitted; Slides from Prof. Kai-Bin Huang



𝑄 = 𝑊!𝒙! 𝒙" 𝒙# 𝒙$ 𝒙% 𝐾 = 𝑊"𝒙! 𝒙" 𝒙# 𝒙$ 𝒙% 𝑉 = 𝑊#𝒙! 𝒙" 𝒙# 𝒙$ 𝒙%

Single-head attention

𝑣" 𝑣#𝑣$𝑣%𝑣&

Token vectors

Tokens I bought an apple watch

𝒙# 𝒙$ 𝒙% 𝒙& 𝒙'
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𝑘" 𝑘#𝑘$𝑘%𝑘&
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𝑞%

𝑊!

𝑞&

𝑊!

𝑞$

𝑊!

𝑞"

𝑊!

𝑞#

Attention 𝑄, 𝐾, 𝑉 = softmax
𝑄𝐾$

𝑑%
𝑉

∈ 𝑅&×&!𝑊' ∈ 𝑅&×&!𝑊( ∈ 𝑅&×&"𝑊)

* Slides from Prof. Kai-Bin Huang



Token vectors

Tokens I bought an apple watch

𝒙# 𝒙$ 𝒙% 𝒙& 𝒙'

Feed
Forward

Feed
Forward

Feed
Forward

Feed
Forward

Feed
Forward

Masked Multi-head Self-Attention

Decoder #1

Feed Forward Network (FFN)

𝐹𝐹𝑁 𝒙 = ReLU 𝒙𝑾# + 𝒃# 𝑾$ + 𝒃$
𝒙

ReLU
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⋮
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* LayerNorm and residual omitted; Slides from Prof. Kai-Bin Huang



Token vectors

Tokens I bought an apple watch
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Token vectors

Tokens I bought an apple watch
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* LayerNorm and residual omitted; Slides from Prof. Kai-Bin Huang



Distributed LLM Training: Outline

• What to memorize
• Computation flow instead of functionalities of different modules

• Computational cost and memory consumption

• What to know beforehand
• Block matrix multiplication

• Some basic software, hardware and networking knowledge



Why do we need “distributed training”?



Quantitative Analysis
• GPT-175B models: parameters

• Embedding layer
                                      𝑛"#$%& :   size of vocabulary 
                                      𝑛'#()*:   model dimension
                                      𝑛)'&)( = 𝑛"#$%&×	𝑛'#()*
                                     
• Multi-head Attention
      𝑑+: dimension of head 𝑄 and 𝐾
      𝑑": dimension of head 𝑉
      𝑛,)%(-: number of heads
      𝑛*%.)/-: number of Transformer layers
      𝑑,)%(: dimension of head, typically equal to 𝑑+ and 𝑑"

                    𝑊0
1 , 	𝑊0

2 , 	𝑊0
3∈ 	𝑅(&'()*×(+),( ,  and   𝑊5 ∈ 𝑅(&'()*×(+),(



Quantitative Analysis

• GPT models: parameters
• Multi-Layer Perceptron (MLP)
                        𝑑667 :   dimension of fully connected layer 
                        𝑏8 ∈ 𝑅(--. , 𝑏9 ∈ 𝑅(&'()*  and 𝑊8,𝑊9 ∈ 𝑅(--.×(&'()*

     𝑛:;< = 2	𝑑667×	𝑑'#()* + 𝑑667 + 𝑑'#()*
                                     
• Total number of parameters
𝑛=#=%* = 𝑛"#$%&	𝑛'#()* +	𝑛*%.)/-(4	𝑛,)%(-	𝑑'#()* 	𝑑,)%( + 2	𝑑667	𝑑'#()*)

Since 𝑑'#()* =	𝑑,)%(𝑛,)%( and letting 𝑑667 = 4𝑑'#()* (Today’s models usually do 
not abide by this rule of thumb)

𝑛=#=%* = 𝑛"#$%&	𝑛'#()* +	𝑛*%.)/-(12𝑑'#()*9 + 5𝑑'#()*)



Quantitative Analysis

• How many GPUs do we need?

《Language Models are Few-Shot Learners》
《Efficient large-scale language model training on GPU clusters using megatron-LM》

6 175𝐵 300𝐵

# parameters

×× /
# tokens

160𝑇𝐹𝐿𝑂𝑃𝑠

TFLOPs/GPU

/ 3600 ∗ 24 ∗ 30
Second

= 800
# GPUs

Training 

Demand

Provision

FLOPs/Token/Parameter # Parameters # Tokens

Training timeUtilizationGPU FLOPs# GPU

LLM computing Load

Actual GPU Computing Power



Quantitative Analysis

• GPU HBM Content During Training

• An example of GPT-3 175B
• Optimizer States

• 32-bit Parameter (700 GB)

• Adam Moment (700 GB)
• Adam Variance (700 GB)

• 16-bit Parameter (350 GB)
• 16-bit Gradient (350 GB)
• Activations (depending on batch size)
• Buffer and Fragmentation

Training 
Content

Static 
Content

Parameters Gradients Optimizer 
States

Dynamic 
Content

Activations Buffers



Quantitative Analysis

• Adam Optimizer (Adaptive Moment Estimation)
• First moment (mean) estimate

𝑚# = 𝛽$𝑚#%$ + (1 − 𝛽$)
𝜕𝐿
𝜕𝑤#

• Second moment (variance) estimate
𝑣# = 𝛽&𝑣#%$ + (1 − 𝛽&)( '(')!)

&

• Bias correction

-𝑚# =
*!
$%+"!

,       .𝑣# =
,!

$%+#
!

• Final parameter

𝑤*+& = 𝑤* − 𝛼 :
;𝑚*

=𝑣* + 𝜖



Quantitative Analysis

• GPT-175B models: storage 

                                      

Models become larger and larger GPU HBM size remains small

> 2800 GB



Distributed Training

• Multiple GPUs compute collaboratively

• Data Parallel, Pipeline Parallel, Tensor Parallel, Expert Parallel, Sequence 

Parallel, Context Parallel

• GPU interconnection

NVLink 5.0 (e.g. 1.8TB/s) RDMA (RoCE/InfiniBand, e.g. 400Gbps) PCIe 5.0 (e.g. 128GB/s, 16lanes)



Distributed Training

• Importance of Communication

• Traffic volume

• 16-bit gradient of GPT3-175B: 350GB needs to be transmitted in every iteration

• Even more data communication if model is partitioned

• Imbalanced technology upgrading

• Ampere A100 (FP16 312TFLOPS, released in 2020)  à  Blackwell B300 (FP8 72PFLOPS, 2025)

• NVLink 3.0 (600GB/s, 2020) à NVLink 4.0 (900GB/s, 2022) à  NVLink 5.0 (1.8TB/s, 2025)



Distributed LLM Training: Outline

• Data Parallelism
• Parameter-Server

• All-Reduce

• Memory Optimization

• Model Parallelism
• Pipeline Parallelism

• Tensor Parallelism

• Sequence Parallelism

• Mixture of Experts



Distributed LLM Training: Outline

• Data Parallelism
• Distribute data to workers

• Each worker work independently

• Synchronize gradients via different approaches

• Repeat the above procedures until

    model convergence

gradients gradients

Gradient Synchronization

Aggregate compute power



Parameter Server Architecture

Distributed Parameter Server Architecture:
Augmenting Bandwidth



Parameter Server Architecture

Network Bottleneck

Ø Shared bottleneck

ØCommunication throttles 

computation

ØReduced bandwidth 

efficiency due to multi-

flow competition

ØDifficult to overlap comp. 

and comm., push and pull 



Optimizing PS Architecture via Scheduling

Layer-wise Computation and Communication

Computation order: bpN à bpN-1 à … à bp2 à bp1 à fp1 àfp2 à … à fpN

Data availability order: gradientN à gradientN-1 à … à gradient2 à gradient1



Optimizing PS Architecture via Scheduling

Tensor Transmission Scheduling in Parameter Server

WFBP
(Wait-free BP)

ByteScheduler
(by ByteDance)

Ideal Case

Transmit when it is possible 

Partition tensors and transmit 
with predefined priority

Push & Pull overlapping

Ideal comp. and comm., push 
and pull overlapping



Optimizing PS Architecture via Asynchronism

Asynchronous Training: Mitigating Stragglers

Synchronous Training: Some machines 
compute or communicate faster, but 

randomly faster

Iter.t Iter.t+1 Iter.t+2
W0

W1

W2

W3

Forward Backward Wait Sync. barrier

Training progress

Iter.t

W0

W1

W2

W3

Forward Backward Async. Comm

Training progress

Iter.t+1 Iter.t+2 Iter.t+3

Asynchronous Training: no 
synchronization barrier

“wait” wastes computing resource 
Aggregating parameters of different iterations 

may impair convergence and model performance



Optimizing PS Architecture via Compression

Sparsification and Quantization

Sparsification: Reducing # of
parameters

《Communication Compression Techniques in Distributed Deep Learning: A Survey》

Keeping those with large 
absolute values

Transmitting index vector
Mapping gradients into low-precision ones 

w/wo the consideration of value distribution



Parameter Server Architecture

Simple, usually for small ML models and 
distributed learning in wide-area networks



Distributed LLM Training: Outline

• Data Parallelism
• Parameter-Server

• All-Reduce

• Memory optimization

• Model Parallelism
• Pipeline Parallelism

• Tensor Parallelism

• Sequence Parallelism

• Mixture of Experts



All-Reduce

• Collective Communication

“Collective communication is communication that involves a group of 
processing elements (termed nodes in this entry) and affects a data transfer 
between all or some of these processing elements. Data transfer may 
include the application of a reduction operator or other transformation of 
the data.”  《Encyclopedia of Parallel Computing 》

集合通信是指一个进程组的所有进程都参与的全局通信操作。

全部点对点通信完成才算集合通信完成



All-Reduce

• Why Collective Communication
• Simplified Programming Interface

• Developers don't need to manually code complex synchronization and data distribution logic 
for every scenario.

• Scalability for Large-Scale Systems
• As systems grow to thousands of nodes or GPUs (e.g., in supercomputers or cloud clusters), 

managing communication becomes exponentially complex. These libraries support sparse 
data handling, fault tolerance, and observability features to ensure reliable operation at scale.

• Decompose Compute and Communication
• Allowing machine learning researchers and system engineers to work on their own.



All-Reduce

• Collective Communication: Most Basic Operations
• SEND, RECEIVE, COPY, BARRIER, SIGNAL+WAIL (in Message Passing Interface, 

i.e. MPI)

0

1

2

3

0

1

2

3

0

1

2

3

0

1

2

3

T 1 T 2 T 3 T 4

Barrier() Barrier() Barrier()

* Pictures replotted, but originated from Mengyuan @ Zhihu 



All-Reduce

• Collective Communication: More Advanced Operations
• Broadcast: one-to-many

• Gather: many-to-one, and All-Gather: many-to-many

• Scatter: one-to-many

• Reduce: many-to-one, and All-Reduce: many-to-many

• Reduce-Scatter: aggregate data and then transmit

• All-to-All: many-to-many



All-Reduce

• Collective Communication: More Advanced Operations
• Broadcast

After broadcasting, every GPU owns the same data



All-Reduce

• Collective Communication: More Advanced Operations
• Gather

A GPU collects data shards on different GPUs

Gather
A

GPU0

B

GPU1

C

GPU2

D

GPU3

A

B

C

D

GPU0 GPU1 GPU2 GPU3



All-Reduce

• Collective Communication: More Advanced Operations
• Scatter

Disseminate each shard to a different GPU

Scatter
A1

B1

C1

D1

GPU0 GPU1 GPU2 GPU3

A1

B1

C1

D1

GPU0 GPU2 GPU3GPU1



All-Reduce

• Collective Communication: More Advanced Operations
• Reduce

Transform data shards on different GPUs into one shard (via MIN, MAX, SUM …) at a GPU



All-Reduce

• Collective Communication: More Advanced Operations
• All-Reduce

Transform data shards on different GPUs into one shard at every GPU



All-Reduce

• Collective Communication: More Advanced Operations
• All-Gather

Collect data shards on different GPUs at every GPU



All-Reduce

• Collective Communication: More Advanced Operations
• Reduce-Scatter

Aggregate data chunks and store one shard at a GPU



All-Reduce

• Collective Communication: More Advanced Operations
• All-to-All

GPU i sends j-th chunk to GPU j, and GPU j stores the chunk from GPU i at the i-th location

All to All

GPU0 GPU1 GPU2 GPU3

A1

B1

C1

D1

A2

B2

C2

D2

A3

B3

C3

D3

A4

B4

C4

D4

A1 B1 C1 D1

A2 B2 C2 D2

A3 B3 C3 D3

A4 B4 C4 D4

GPU0 GPU1 GPU2 GPU3



Starting from the most important “All-Reduce”



Ring All-Reduce

• Ring All-Reduce

• Tree All-Reduce

• Topology-aware All-Reduce



Ring All-Reduce

• Ring All-Reduce

Ring All-Reduce Overlay Topology Local gradient after back propagation

Transmission direction

a0

a1

a2

a3

GPU a

b0

b1

b2

b3

GPU b

c0

c1

c2

c3

GPU c

d0

d1

d2

d3

GPU d

Initial State

GPU a GPU b

GPU cGPU d



Ring All-Reduce

• Ring All-Reduce

Reduce-Scatter

a0

a1

a2

a3+d3

GPU a

a0+b0

b1

b2

b3

GPU b

c0

b1+c1

c2

c3

GPU c

d0

d1

c2+d2

d3

GPU d

Reduce-scatter step 1

a0

a1

a2

a3

GPU a

b0

b1

b2

b3

GPU b

c0

c1

c2

c3

GPU c

d0

d1

d2

d3

GPU d

Initial State



Ring All-Reduce

• Ring All-Reduce

a0

a1

a2+c2+d2

a3+d3

GPU a

a0+b0

b1

b2

a3+b3+d3

GPU b

a0+b0+c0

b1+c1

c2

c3

GPU c

d0

b1+c1+d1

c2+d2

d3

GPU d

Reduce-scatter step 2

a0

a1+b1+c1+d1

a2+c2+d2

a3+d3

GPU a

a0+b0

b1

a2+b2+c2+d2

a3+b3+d3

GPU b

a0+b0+c0

b1+c1

c2

a3+b3+c3+d3

GPU c

a0+b0+c0+d0

b1+c1+d1

c2+d2

d3

GPU d

Reduce-scatter step 3

Reduce-Scatter



Ring All-Reduce

• Ring All-Reduce

All-Gather

a0+b0+c0+d0

a1+b1+c1+d1

a2+c2+d2

a3+d3

GPU a

a0+b0

a1+b1+c1+d1

a2+b2+c2+d2

a3+b3+d3

GPU b

a0+b0+c0

b1+c1

a2+b2+c2+d2

a3+b3+c3+d3

GPU c

a0+b0+c0+d0

b1+c1+d1

c2+d2

a3+b3+c3+d3

GPU d

AllGather step 1

a0+b0+c0+d0

a1+b1+c1+d1

a2+c2+d2

a3+b3+c3+d3

GPU a

a0+b0+c0+d0

a1+b1+c1+d1

a2+b2+c2+d2

a3+b3+d3

GPU b

a0+b0+c0

a1+b1+c1+d1

a2+b2+c2+d2

a3+b3+c3+d3

GPU c

a0+b0+c0+d0

b1+c1+d1

a2+b2+c2+d2

a3+b3+c3+d3

GPU d

AllGather step 2



Ring All-Reduce

• Ring All-Reduce

AllGather

a0+b0+c0+d0

a1+b1+c1+d1

a2+b2+c2+d2

a3+b3+c3+d3

GPU a

a0+b0+c0+d0

a1+b1+c1+d1

a2+b2+c2+d2

a3+b3+c3+d3

GPU b

a0+b0+c0+d0

a1+b1+c1+d1

a2+b2+c2+d2

a3+b3+c3+d3

GPU c

a0+b0+c0+d0

a1+b1+c1+d1

a2+b2+c2+d2

a3+b3+c3+d3

GPU d

AllGather step 3

• Reduce-Scatter
• 𝑁: # of GPUs, 𝑆: per-GPU data volume
• 𝑁 − 1 rounds
• 𝑆/𝑁 data transmission per round

• All-Gather
• One round boradcasting or 𝑁 − 1 

clockwise rounds
• Data volume: (𝑁 − 1) ∗ 𝑆/𝑁

• Total traffic per GPU
• 𝟐 ∗ (𝑵 − 𝟏) ∗ 𝑺/𝑵



Ring All-Reduce

“All-Reduce = Reduce-Scatter + All-Gather”



(Recursive) Halving Doubling All-Reduce

• Halving Doubling All-Reduce

• Halving
• log2𝑁 rounds
• 𝑆	data per round

• Doubling
• log2𝑁 rounds
• 𝑆 data per round

• Total traffic per GPU
• 2 ∗ 𝑆 ∗ log2𝑁

Halving and Doubling

GPU 0 GPU 1 GPU 2 GPU 3

GPU 1 GPU 3

GPU 1 GPU 3

GPU 3

GPU 0 GPU 1 GPU 2 GPU 3



Butterfly All-Reduce

• Butterfly Reduce

Butterfly Reduce: Utilizing bidirectional bandwidth

• Butterfly Reduce
• log2𝑁 rounds
• 𝑆 data per round

• Total Traffic per-GPU
• log2𝑁	 ∗ 	𝑆

GPU 0 GPU 1 GPU 2 GPU 3

GPU 0 GPU 1 GPU 2 GPU 3

GPU 0 GPU 1 GPU 2 GPU 3



Rabenseifner All-Reduce

• Rabenseifner Reduce

Rabenseifner Algorithm (an enhanced naïve halving-doubling)
《Allreduce算法及其硬件加速方法介绍》

Aggregation

Collection

• Total Traffic per-GPU
• 2 log2𝑁 rounds
• Different traffic load 

at every round
• Total traffic volume: 
2 -

. +
-
/ +⋯+ -

0 ≈
2 012

0 	𝑆



Cross-Comparison

• Communication Cost
• Assumption: each GPU can send and receive data simultaneously

• Classical ⍺-β model:     latency   =   𝛼	 + 	𝛽 A ;<
Algorithm Rounds Traffic Load Cost Pros and Cons

Ring 2(N-1) 2S(N-1)/N 2(N-1)*(α + S/B)
§ Large data chunk aggregation
§ Relatively small # of GPUs
§ Not suitable for short chunks
§ Ease of implementation
§ Utilizating bidirectional links

Rabenseifner 2 ⌈log 𝑁⌉ 2S(N-1)/N 2⌈log 𝑁⌉𝛼+2(𝑁−1)𝑆/𝑁*𝛽
§ Relatively smaller data chunk
§ Large # of GPUs
§ Periodically changing communication 

pairs

“start-up” delay transmission efficiency

Message size/bandwidth



Challenge of Scaling Out

• Two-tier spine-leaf topology

Network congestion, load balancing 

High bandwidth 
inside a machine

Low bandwidth 
cross machines

Topology-aware CCL



All-Reduce for LLM training

• Each company develops its own collective communication libraries
• NCCL (NVIDIA CCL)

• MSCCL (Microsoft CCL)

• Gloo

• HCCL (Huawei CCL)

• ACCL (Alibaba CCL)

• TCCL (Tencent CCL)

• Many to be added

Tailored for their own harware, 
datacenter network topology, etc.



All-Reduce for LLM training

• Hierarchical All-Reduce

《Highly Scalable Deep Learning Training System with Mixed-Precision: Training ImageNet in Four Minutes》

intra-node reduce 
(NVLINK)

inter-node all-reduce
(RDMA)

intra-node broadcast
(NVLINK)



All-Reduce for LLM training

• 2D Torus All-Reduce Step 1: Intra-ring Reduce-Scatter

Intra-machine NVLink/CXL; Inter-machine RDMA (≥ 2 NICs)
Designed by SONIC

Step 2: Inter-ring All-Reduce

Step 3: Intra-ring All-Gather

Horizontal: intra-machine GPU interconnect via NVLink/CXL
Vertical: inter-machine GPU interconnect via RDMA NICs

《分布式训练常用的网络结构及集合通信拓扑算法》知乎



All-Reduce for LLM training

• 2D Mesh All-Reduce

2D Mesh: removing links connecting the first 
and the last GPUs of each row and column

Step 1: Intra-Ring All-
Reduce

Step 2: Inter-Ring All-
Reduce

《分布式训练常用的网络结构及集合通信拓扑算法》知乎



All-Reduce for LLM training

• 3D Torus All-Reduce

《TPU v4: An Optically Reconfigurable Supercomputer for Machine Learning with Hardware Support for Embeddings》

TPUv4i board with 4 chips that are connected by ICI.

3D Torus (3-ary 3-cube)
Initially designed by IBM

5D, 6D Torus in HPC areas



Distributed LLM Training: Outline

• Data Parallelism
• Parameter-Server

• All-Reduce

• Memory optimization

• Model Parallelism
• Pipeline Parallelism

• Tensor Parallelism

• Sequence Parallelism

• Mixture of Experts



LLM training: DP with Memory Optimization

• Retrospect: GPU HBM Content During Training

• An example of GPT-3 175B
• Optimizer States

• 32-bit Parameter (700 GB)

• Adam Moment (700 GB)
• Adam Variance (700 GB)

• 16-bit Parameter (350 GB)
• 16-bit Gradient (350 GB)
• Activations (depending on batch size)
• Buffer and Fragmentation

Training 
Content

Static 
Content

Parameters Gradients Optimizer 
States

Dynamic 
Content

Activations Buffers



LLM training: DP with Memory Optimization

• How to put an elephant into a fridge?

GPU0 GPU1 GPU2 GPU3

Optimizer States



LLM training: DP with Memory Optimization

• How to put an elephant into a fridge?

GPU0 GPU1 GPU2 GPU3

Sharding the elephant into four partitions, and 
each GPU HBM holds one chunk!



LLM training: DP with Memory Optimization

• ZeRO (Zero Redundancy) optimization: an overview

ZeRO-1

ZeRO-2

ZeRO-3

HBM usage with DP degree 64
《Fit More and Train Faster With ZeRO via DeepSpeed and FairScale》



LLM training: DP with Memory Optimization

• ZeRO-1&2
• Forward is OK because each GPU holds the complete parameter

• Backward is OK because of the same reason

• AllReduce = ReduceScatter + AllGather
• ReduceScatter is OK

• Update optimizer state shards

• Incomplete optimizer states at every GPU

• Update parameter shards

• AllGather remaining parameter shards to assembly the complete parameter



LLM training: DP with Memory Optimization

• ZeRO-2 (All-Reduced is substituted by Reduce-Scatter + All-Gather)

• Reduce-Scatter
• Green shards are global gradients after 

reduce-scatter
• Pink shards are optimizer partitions hosted 

at each GPU/machine

• Update OS shards and partial parameters

• All-Gather
• Each GPU acquires complete model 

parameters



LLM training: DP with Memory Optimization

• ZeRO-3 (parameter, gradient and optimizer sharding)
• Forward is NOT OK because of incomplete parameter

• Need to fetch parameter shards from other GPUs via BROADCAST

• Backward is NOT OK because of incomplete parameter
• Need to fetch parameter shards from other GPUs via BROADCAST again

• Aggregating local gradient shards to obtain global gradient shards
• Reduce Scatter is OK

• Updating optimizer shards and parameter shards are OK
• No “AllGather” operation afterwards



LLM training: DP with Memory Optimization

• ZeRO-3: An animation (Implementation on DeepSpeed could be somewhat different)

• All-Gather
• Collecting parameters for 

forward propagation

• All-Gather
• Collecting parameters for 

back propagation

• Reduce-Scatter
• Obtaining global gradient

• Update OS and param.

Source: microsoft official site



LLM training: DP with Memory Optimization

• ZeRO-3: DeepSpeed Implementation
• Replacing broadcast by allreduce

• Intra-layer partitioning instead of inter-layer partitioning

GPU0 GPU1

GPU2 GPU3

Broadcast

GPU0 GPU1 GPU2 GPU3

Intra-layer partitioning, and AllGather



LLM training: DP with Memory Optimization

• ZeRO Offload

• Store OS in CPU memory
• ~1TB vs 80GB HBM

• Connection speed
• PCIe 5.0 (16 lanes) ~ 64GB/s
• NVIDIA H100 NVLink 4.0 ~ 

unidirectional 450GB/s

• GPUßàCPU bottleneck

PCIe communications
back and forth



LLM training: DP with Memory Optimization

• ZeRO Offload: workflow
• Forward propagation at GPU HBM

• Backward propagation at GPU HBM

• Optimizer state is at CPU main memory

• Transmit gradient to from GPU to CPU

• Update optimizer states at CPU memory (which is relatively slow)

• Update parameter at CPU memory

• Transmit new parameter from CPU to GPU, and repeat



LLM training: DP with Memory Optimization

• Pros and Cons
• Training GPT2 on A100: reduced GPU utilization

Where are these bubbles coming from?



LLM training: DP with Memory Optimization

• ZeRO Offload Variants

《STRONGHOLD: Fast and Affordable Billion-Scale Deep Learning Model Training》

STRONGHOLD stores some DNN layers in the GPU memory and 
swapping out the finished layer states to the CPU RAM. 



LLM training: DP with Memory Optimization

• ZeRO Offload Variants

《MemFerry: A Fast and Memory Efficient Offload Training Framework with Hybrid GPU Computation》
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LLM training: DP with Memory Optimization

• ZeRO Infinity

• Bandwidth
• GPU > CPU > NVMe

• Read Data
• Read parameter using All-

Gather

• Data Path
• CPU à GPU
• NVMe à CPU à GPU

《ZeRO-Infinity: Breaking the GPU Memory Wall for Extreme Scale Deep Learning》 



LLM training: DP with Memory Optimization

• ZeRO++: Low-bandwidth Scenario
• Quantized Weight Communication

• FP16 weight -> INT8 weight before All-Gather
• block-quantization based all-gather in FP
• INT8 -> FP16 after All-Gather

•  Hierarchical Partitioning
• (trying to) eliminate the inter-node all-gather

•  Quantized Gradients Communication
• Standard Reduce-Scatter involves a lot of 

quantization and dequantization steps
• leverages all-to-all collectives to implement 

quantized reduce- scatter

《ZeRO++: Extremely Efficient Collective Communication for Giant Model Training 》 

Hierarchical partitioning (not diving into details)



LLM training: DP with Memory Optimization

• Retrospect: GPU HBM Content During Training

• An example of GPT-3 175B
• Optimizer States

• 32-bit Parameter (700 GB)

• Adam Moment (700 GB)
• Adam Variance (700 GB)

• 16-bit Parameter (350 GB)
• 16-bit Gradient (350 GB)
• Activations (depending on batch size)
• Buffer and Fragmentation

Training 
Content

Static 
Content

Parameters Gradients Optimizer 
States

Dynamic 
Content

Activations Buffers



LLM training: DP with Memory Optimization

• Activation is non-negligible 
• Forward propagation 

• Backward propagation 

• Size of activation
• Standard transformer: b - batch size, s - sequence length, h - hidden layer dimension 

𝑦 = 𝑊𝑥 + 𝑏

𝑑𝐿
𝑑𝑊 	=

𝑑𝐿
𝑑𝑦 𝑥

Output of a previous layer, intermediate variable

Cannot be discarded after FP

bsh * 2 Bytes

2bsh

2assb
2assb

mask: assb

In-total: 5abss + 8sbh



LLM training: DP with Memory Optimization

• Activation is non-negligible 
• Forward propagation 

• Backward propagation 

• Size of activation
• Standard transformer: b - batch size, s - sequence length, h - hidden layer dimension 

𝑦 = 𝑊𝑥 + 𝑏

𝑑𝐿
𝑑𝑊 	=

𝑑𝐿
𝑑𝑦 𝑥

Output of a previous layer, intermediate variable

Cannot be discarded after FP

bsh * 2 Bytes

2bsh

2assb
2assb

mask: assb

In-total: 5abss + 11sbh

3sbh: Linear layer 
+ dropout layer



LLM training: DP with Memory Optimization

• Activation is non-negligible 
8bsh

8bsh
bsh

2bsh
11bsh+5assb

In-total: 5abss + 34sbh
From Zhihu blogger and《Reducing Activation Recomputation in LLMs》



LLM training: DP with Memory Optimization

• Activation is non-negligible
• b: 3.2M tokens/sequence length, s: 2048 tokens, h: 12288, l: 96 layers

• Activation size ?

• Full activation re-computation: only keeping the initial input and recompute 
everything
• Minimal memory occupation

• Prolonged training time (doing forward propagation once again) by 30%~40%

• Goal of strategic recomputation (not the scope of this class)
• Significantly reducing memory occupation while slightly increasing training time

• Softmax and Softmax dropout are more suitable to be re-computed
https://lambda.ai/blog/demystifying-gpt-3 《Reducing Activation Recomputation in LLMs》 



LLM training: DP with Memory Optimization

《Reducing Activation Recomputation in Large Transformer Models》

• Advantage of Re-computation

Recomputation saves memory footprint Recomputation brings more compute loads



Thanks!



Example Codes

• Training BERT model with distributed data parallel via Ring AllReduce
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Example Codes

• Training BERT model with distributed data parallel via Ring AllReduce



Example Codes

• Single machine two GPUs：
• Using torchrun to launch 2 processes

• Multiple machines eight GPUs：
• Two machines, each having four GPUs, i.e. world_size = 8
• On two machines：

torchrun --standalone --nproc_per_node=2 train_ddp_bert_ring.py --world_size=2 
--rank=0 --epochs=3

torchrun --standalone --nproc_per_node=2 train_ddp_bert_ring.py --world_size=2 
--rank=1 --epochs=3

torchrun --nnodes=2 --nproc_per_node=4 --rdzv_id=bert_job --
rdzv_backend=c10d train_ddp_bert_ring.py --world_size=8 --rank=0 --port=12355

Increasing rank id


