Data Parallelism in LLM Training

Autumn 2025
Lecturer: Yuedong (Steven) Xu
Shenzhen Loop Area Institute

yuedongxu@slai.edu.cn

Fudan University
ydxu@fudan.edu.cn

mailto:yuedongxu@slai.edu.cn
mailto:ydxu@fudan.edu.cn

Disclaimer

Machine learning systems is a broad and rapidly evolving field.
The course material has been developed using a broad
spectrum of resources, including research papers, lecture slides,
blogposts, research talks, tutorial videos, and other materials
shared by the research community. We sincerely appreciate
their efforts and assistance, and try our best to cite the sources of
the materials used in this course.

Distributed LLM Training: Outline

 Transformer: A Quick Overview

e Data Parallelism

* Parameter-Server
e All-Reduce

* Memory Optimization

* Model Parallelism
* Pipeline Parallelism
 Tensor Parallelism

* Sequence Parallelism

e Mixture of Experts

Transformer Overview

 Transformer architecture

Output probabilities

(Sofimax)
Decoder

~

r

[Add & Norm |-
1

(A [MLPs]

|

[Add&Norm }—

Multi-head
Attention

Add & Norm | |

Add & Norm
Multi-head [I]4_
Attention [Masked Multi-head]

A Attention

Encoder

_ J A
. J

[Positional encoding]—»EB ” -
y [Positional encoding }—»EB

[Embeddings] [Embeddings]
I [

Input sequence Target sequence

A minimalist description of Transformer *

* https://re-cing.com/blog/lim-architectures

What to include

* Computation optimization

* Communication optimization
* Storage optimization

pertinent to model training and inference

What NOT to include

Model architecture

Downstream applications

Exhausting system optimization techniques

Detailed engineering/programming efforts

Tokenization = Embedding =) Position

Encoding
= Lnear o celf-Attention =) Feed-Forward
Projection IR, ™
N Flash Attention, MOoE, Attention-FFN

Efficient Attention, _ ,
KV Cache, Model Model Parallelism Disaggregation

Parallelism
Stacked : Parallel
Decoding . L
= Transformer ™ Alaorithm = Training/Distribut
Blocks —~_ ed Serving
\ Specul.atlve \
Parallelism Decoding Data-, Model-, Expert-Parallelism,

Distributed Serving

Tokenization

Many words map to one token, but some don't: i1ndivisible.
| | R A | S ! S S S S Lo

8607 4339 2472 | | 311 832 4037 || 11 || 719 1063 1541 | 956 || 25 || 3687 23936 | | 13

cat dog bear cow indiv
17 07 07 0- 0-
0 1 0 0 0
. 0 0 1 0 0
One-hot encoding 0 0 0 1 0 Value 1 at
tokens |0 0 0 0 04///3687th
: : : : : entry
L0 (- L0 L()- L()-

* Slides from Prof. Kai-Bin Huang

TOKEN EMBEDDING

b

Embedding Space

0wQQORO

r0.57
27|
d 12| =d
L
Embedded token

Vocabulary size q(())_g
<« #tokens - 1
0
Wl
E |

L()-

Embedding Matrix

* Slides from Prof. Kai-Bin Huang

TOKEN EMBEDDING

Embedding Space

r0.57
27|
d 12| =d
L
Embedded token

Matrix Multiplication
y dog

<« #tokens -

O o OoORr OQ

Embedding Matrix

* Slides from Prof. Kai-Bin Huang

:

A A A A

Ve

Feed Feed Feed Feed Feed Feed Feed
Forward || Forward || Forward Forward Forward Forward Forward

{ Self-Attention J

Token vectors

Token t t 1 t t t f
Embedding | WEg WEg WEg Wg Wg WEg Wg

| | | | | | I
Tokens | bought an apple and an orange

* LayerNorm and residual omitted; Slides from Prof. Kai-Bin Huang

v Single-head attention

. QK'
Attention(Q, K, V) = softmax V

Jax

W e ERdXdk wk ERdXdk 1144 ERdxdv

Q = X1 XpX3 X3 x5 | WY K = X1 Xx3x,x5 |WK |/ = X X X3 X, X5 | WV

91 ki vi q2 ky vy, q3 ks v3 Q4 ks vy qs ks vs
N SN SERN SURN SURNY SR SERN SR SERE SR S S S
we wklwv| wel wkX| wvV| we| wx|wV| we| wk|wVvV| welwklwVv

1 — D N,
Token vectors X4 Xo X3 X4 Xs
Tokens I bought an apple watch

* Slides from Prof. Kai-Bin Huang

Feed Forward Network (FFN)/” i i - AR -

FFN(x) = ReLU(xW, + b)W, + Hek

< |

A A 4

Feed Feed Feed Feed Feed
Forward Forward Forward Forward Forward

Decoder #1

[Masked Multi-head Self-Attention J
Token vectors X1 X9 X3 Xy Xt
Tokens I bought an apple watch

* LayerNorm and residual omitted; Slides from Prof. Kai-Bin Huang

O

(@)
A A 9 A A
Feed Feed Feed Feed Feed
Forward Forward Forward Forward Forward
Decoder #2 | I
[Masked Multi-head Self-Attention]

Decoder #1

Masked Multi-head Self-Attention

Feed Feed Feed Feed Feed
Forward Forward Forward Forward Forward

Token vectors f

d X1 P, X, P, X3 Ps X, P,y Xs P
|
Tokens I bought an apple watch

* LayerNorm and residual omitted; Slides from Prof. Kai-Bin Huang

(o)
(o)
Al Al 91 A l A 1
Feed Feed Feed Feed Feed
Forward Forward Forward Forward Forward

Decoder #2 1 | I ‘
[Masked Multi-head Self-Attention

Decoder #1

Masked Multi-head Self-Attention

A

Feed Feed Feed Feed Feed
Forward Forward Forward Forward Forward

— —
\ J \

f
Token vectors ‘f x; P, x, P, X3 P, X, P, Xs Pc
Tokens I bought an apple watch

* LayerNorm and residual omitted; Slides from Prof. Kai-Bin Huang

Distributed LLM Training: Outline

* What to memorize
* Computation flow instead of functionalities of different modules

* Computational cost and memory consumption

 What to know beforehand

* Block matrix multiplication

* Some basic software, hardware and networking knowledge

Why do we need “distributed training”?

Quantitative Analysis

 GPT-175B models: parameters

* Embedding layer
Nyocap - Size of vocabulary
Nmoder: Model dimension

Nembed = Nvocab X Nmodel

* Multi-head Attention
d;: dimension of head Q and K
d,: dimension of head V
Nneads: NUMber of heads
Nyayers: NumMber of Transformer layers
dneqq: dimension of head, typically equal to d;, and d,,

Q K 1% d xd 0 d xd
VVi) Wi) Wi € R%model head and WY € R%model*%head

Quantitative Analysis

* GPT models: parameters
e Multi-Layer Perceptron (MLP)
dfry : dimension of fully connected layer
b, € R4fn b, € R%model and W, W, € RAffn*%model

NyLp = 2 dffn>< Amodel + dffn + dmodel

e Total number of parameters
Ntotal = MNvocab Nmodel + nlayers (4 Npeads dmodel dhead + 2 dffn dmodel)

Since dymoder = AheadMheaq and letting dsry, = 4d 04 (Today’s models usually do
not abide by this rule of thumb)

— 2
Ntotal = Nvocab Mimodel + nlayers(lzdmodel + 5dmodel)

Quantitative Analysis

* How many GPUs do we need?

Demand ™= FLOPs/Token/Parameter € #Parameters € # Tokens
\ J
|

LLM computing Load
Training

Actual GPU Computing Power

\
[|
Provision s # GPU 9 GPUFLOPs I€ Utilization P€ Training time

6 X 175B X 300B / 160TFLOPs / 3600 %24 %30 = 800
parameters #tokens TFLOPs/GPU Second # GPUs

{Language Models are Few-Shot Learners)
{ Efficient large-scale language model training on GPU clusters using megatron-LM)

Quantitative Analysis

* GPU HBM Content During Training

* An example of GPT-3 175B

- * Optimizer States
Training
Gontent e 32-bit Parameter (700 GB)

]
I I

* Adam Moment (700 GB)

l Contont l Contont « Adam Variance (700 GB)
' }) 16-bit Parameter (350 GB)
16-bit Gradient (350 GB)

| | : |
lParameters l Gradients l Og’iiant\eizser lActivations l Buffers
Activations (depending on batch size)

Buffer and Fragmentation

Quantitative Analysis

 Adam Optimizer (Adaptive Moment Estimation)

* First moment (mean) estimate

dL
my = pime_q + (1 — 'Bl)a—wt

 Second moment (variance) estimate
Ve = PV + (1 - ﬁz)(aa—met ?

e Bias correction

* Final parameter

Quantitative Analysis

 GPT-175B models: storage

18000

GPU Memory Type
- arr Tesla P100 16GB HBM?2
- 9800 8 | TeslaV100 32GB HBM2
v l . TeslaA100 40/80GB HBM2E
e 0r Clude 2 Tesla AB0O 80GB HBM2E

whak; GPTi . sams 2 TeslaH100 80GB HBM3

Tesla H800 80GB HBM3

Models become larger and larger GPU HBM size remains small

Distributed Training

* Multiple GPUs compute collaboratively

* Data Parallel, Pipeline Parallel, Tensor Parallel, Expert Parallel, Sequence

Parallel, Context Parallel

* GPU interconnection

NVIDIA" NVLink

InfimBand NDR 400Gbh/s Single ConnectX~-7 400GbE Single—-porl
PCle 5.0 x16 OSFP, PCle 5.0 x16

NVLink 5.0 (e.g. 1.8TB/s) RDMA (RoCE/InfiniBand, e.g. 400Gbps) PCle 5.0 (e.g. 128GB/s, 16lanes)

Distributed Training

* Importance of Communication

* Traffic volume
e 16-bit gradient of GPT3-175B: 350GB needs to be transmitted in every iteration
* Even more data communication if model is partitioned

* Imbalanced technology upgrading

* Ampere A100 (FP16 312TFLOPS, released in 2020) => Blackwell B300 (FP8 72PFLOPS, 2025)

* NVLink 3.0 (600GB/s, 2020) => NVLink 4.0 (900GB/s, 2022) = NVLink 5.0 (1.8TB/s, 2025)

Distributed LLM Training: Outline

* Data Parallelism

* Parameter-Server

* All-Reduce

* Memory Optimization
* Model Parallelism

* Pipeline Parallelism

* Tensor Parallelism

e Sequence Parallelism

* Mixture of Experts

Distributed LLM Training: Outline

e Data Parallelism

Distribute data to workers

Gradient Synchronization
Each worker work independently

Synchronize gradients via different approaches T gradients gradients T

- -

Worker 1 Worker 2 Worker k

Repeat the above procedures until

model convergence

1} L} 1}
:> Aggregate compute power Saining da@

Parameter Server Architecture

4. Update: W™ =W — yAW

5. Pull: wnevw
3. Push: AW

2.back propagation

1. forward propagation

[Parameter] L. [Parameter

Distributed Parameter Server Architecture:

Augmenting Bandwidth

Parameter Server Architecture

Parameter | Parameter » Shared bottleneck
Server 1 Server n
Y b vy R . » Communication throttles
- — q\. computation
Worker 1 Worker 2 Worker k

=
A

» Reduced bandwidth

WPORNIN

<
{
\
X%
<
4/,
£

efficiency due to multi-

flow competition

» Difficult to overlap comp.

and comm., push and pull

Network Bottleneck

Optimizing PS Architecture via Scheduling

— bpy | > - — | bp,

Computation Communication

™ bpl L JA' fpl
pushy — pull,

—_> fpz —P oo

» push, — pull,

> PN

» pushy — pully

Computation order: bpy =2 bpy4 =2 ... 2 bp, =2 bp; =2 fp; 2fp, 2 ... 2 fpy

—>

Data availability order: gradienty = gradienty ; = ... =2 gradient, = gradient,

Layer-wise Computation and Communication

Optimizing PS Architectu

WFBP
(Wait-free BP)

ByteScheduler
(by ByteDance)

Ideal Case

e via Scheduling

Transmit when it is possible

time
Computation bps bp, bp, / frr fp2 fp3
Push 1 .

/ Push & Pull overlapping

Pull 2 1

time
Computation bps bp, bp fp1 fo2 fps
Push 3E 3020102020203)

B:0:0:0202028 § startup time
Pull 33 1|[(2]|[2]|2
Partition tensors and transmit
with predefined priority
Computation bps bp, bp for fp2 fps
Push 3 2 2 3
—_—

Pull 3 2 2 |3 Ideal comp. and comm., push

Tensor Transmission Scheduling in Parameter Server

and pull overlapping

Optimizing PS Architecture via Asynchronism

“wait” wastes computing resource

)
[1 Forward/[C__] Backward [Wait Sync. barrier

Iter.t . Iter.t+1 . Iter.t+2

wo |

W1 |

w2 |

w3 |

Training progress

Synchronous Training: Some machines
compute or communicate faster, but
randomly faster

Aggregating parameters of different iterations
may impair convergence and model performance

[1 Forward Backward [Async. Comm
Iter.t Iter.t+1 [ter.t+2 Iter.t+3
> ﬁ ——)
wo [|] Il [[]
Wi | [[| /I [- [| I []
w2 [O C T - 1 [[]
w3 [I] F 1 B]

Training progress

Asynchronous Training: no
synchronization barrier

Asynchronous Training: Mitigating Stragglers

Optimizing PS Architecture via Compression

‘-0.3! 14 !-2.1 ‘ 0.0 ‘ 0.9 III Flatten Gradient Tensor

I Selection Keeping those with large “amax — -y
g absolute values L

[1.4 [21] >0.9/ ﬂ \

I Sparsification : ,

-128 Y 127

14 (-2.1| 0.9 Value Vector

1 2 4 Indices Vector

Mapping gradients into low-precision ones

Sparsification: Reducing # of w/wo the consideration of value distribution
parameters

Transmitting index vector

Sparsification and Quantization
{Communication Compression Techniques in Distributed Deep Learning: A Survey)

Parameter Server Architecture

(Parameter W L (Parameter 1
Server 1 Server n

Simple, usually for small ML models and
distributed learning in wide-area networks

*t ¢ ¢
Sraining daa

Distributed LLM Training: Outline

* Data Parallelism

* Parameter-Server

* All-Reduce

* Memory optimization
* Model Parallelism

* Pipeline Parallelism

* Tensor Parallelism

e Sequence Parallelism

* Mixture of Experts

All-Reduce

e Collective Communication

“Collective communication is communicatfion that involves a group of
processing elements (fermed nodes in this entry) and affects a data fransfer
between all or some of these processing elements. Data transfer may
include the application of a reduction operator or other transformation of

the data.” (Encyclopedia of Parallel Computing)

EoBERE—HEENFEHEES S SNEREEERF.

\ 4

EMRNRBEEATEERGBRERT

All-Reduce

* Why Collective Communication

e Simplified Programming Interface

* Developers don't need to manually code complex synchronization and data distribution logic
for every scenario.

 Scalability for Large-Scale Systems

* As systems grow to thousands of nodes or GPUs (e.g., in supercomputers or cloud clusters),
managing communication becomes exponentially complex. These libraries support sparse
data handling, fault tolerance, and observability features to ensure reliable operation at scale.

 Decompose Compute and Communication

* Allowing machine learning researchers and system engineers to work on their own.

All-Reduce

* Collective Communication: Most Basic Operations

 SEND, RECEIVE, COPY, BARRIER, SIGNAL+WAIL (in Message Passing Interface,
i.e. MPI)

Barrier() Barrier() Barrier()

© ©
® ® ®
@ @ @
© S ©

T1 T2 T3 T4

* Pictures replotted, but originated from Mengyuan @ Zhihu

OXOROXO

All-Reduce

* Collective Communication: More Advanced Operations

e Broadcast: one-to-many

Gather: many-to-one, and All-Gather: many-to-many

Scatter: one-to-many

Reduce: many-to-one, and All-Reduce: many-to-many

Reduce-Scatter: aggregate data and then transmit

* All-to-All: many-to-many

All-Reduce

* Collective Communication: More Advanced Operations

 Broadcast

After broadcasting, every GPU owns the same data

All-Reduce

* Collective Communication: More Advanced Operations

e Gather

A GPU collects data shards on different GPUs

All-Reduce

* Collective Communication: More Advanced Operations

e Scatter

Scatter

Disseminate each shard to a different GPU

All-Reduce

* Collective Communication: More Advanced Operations

e Reduce

rankO
=10)
c0
do

Transform data shards on different GPUs into one shard (via MIN, MAX, SUM ...) at a GPU

All-Reduce

* Collective Communication: More Advanced Operations
e All-Reduce

a0+al+a2+a3 a0+al+a2+a3 al+al+a2+a3 al+al+a2+a3

b0+b1+b2+b3 b0+b1+b2+b3 b0+b1+b2+b3 b0+b1+b2+b3

c0+c1+c2+c3 c0+c1+c2+c3 ch+c1+c2+c3

d0+d1+d2+d3 d0+d1+d2+d3 d0+d1+d2+d3

Transform data shards on different GPUs into one shard at every GPU

All-Reduce

* Collective Communication: More Advanced Operations
e All-Gather

rankO rank1 rank2
a0 |

Collect data shards on different GPUs at every GPU

All-Reduce

* Collective Communication: More Advanced Operations

e Reduce-Scatter

rankO rank2

al+al+a2+a3

cD+c1+c2+c3

Aggregate data chunks and store one shard at a GPU

All-Reduce

* Collective Communication: More Advanced Operations
 All-to-All

All to All

)

GPU i sends j-th chunk to GPU j, and GPU j stores the chunk from GPU i at the i-th location

Starting from the most important “All-Reduce”

Ring All-Reduce

* Ring All-Reduce
* Tree All-Reduce

* Topology-aware All-Reduce

Ring All-Reduce

Transmission direction

* Ring All-Reduce

/
[GPU a] >[GPU b] GPU a GPU b GPU ¢ GPU d

A
a0 b0 c0 do
al bl cl dl
a2 b2 c2 d2
(= a3 b3 c3 d3
| GPud - | Gpuc |)
Initial State

Ring All-Reduce Overlay Topology Local gradient after back propagation

Ring All-Reduce

* Ring All-Reduce

GPU a

a0

al

a2

a3

GPU b GPU ¢ GPU d
b0) do
bl cl dl
b2 c2 d2
b3 c3 d3

Initial State

Reduce-Scatter

GPU a GPU b GPU ¢ GPUd
a0 > a0+b0 cO do
al bl bl+cl dl
a2 b2 c2 c2+d2

a3+d3 b3 c3 d3

Reduce-scatter step 1

Ring All-Reduce

* Ring All-Reduce

\ 4

GPU a GPU b GPU ¢ GPUd
a0 a0+b0 = a0+b0+c0 do
al bl bl+cl bl+cl+dl
a2+c2+d2 b2 c2 c2+d2
a3+d3 »| a3+b3+d3 c3 d3

GPU a GPU b GPU ¢ GPUd
a0 a0+b0 a0+b0+c0 —[bl a0+b0+c0+d0
E al+bl+cl+dl Bl bl+cl bl+cl+dl
(az+c2+az a2+b2+c2+d2 o2 c2+d2
a3+d3 a3+b3+d3 a3+b3+c3+d3 d3

Reduce-scatter step 2

Reduce-Scatter

Reduce-scatter step 3

Ring All-Reduce

e Ring All-Reduce

GPU a GPU b GPU c GPU d GPU a GPU b GPU ¢ GPU d
a0+b0 a0+b0+c0 -. a0+b0+c0
bl+cl bl+cl+dl
a2+c2+d2 | c2+d2 |
a3+d3 a3+b3+d3
AllGather step 1 AllGather step 2

All-Gather

Ring All-Reduce

* Ring All-Reduce * Reduce-Scatter
 N:#of GPUs, S: per-GPU data volume
GPU a GPU b GPU ¢ GPU d * N —1rounds
* S/N data transmission per round
* All-Gather

* One round boradcastingor N — 1
clockwise rounds

AllGather step 3 Datavolume: (N —1) *S/N
AllGather Total traffic per GPU
*2x(N—-1)*S/N

Ring All-Reduce

“All-Reduce = Reduce-Scatter + All-Gather”

(Recursive) Halving Doubling All-Reduce

* Halving Doubling All-Reduce

* log,N rounds
e S data per round

m * Doubling
* log,N rounds
e S data per round

* Total traffic per GPU

GPU 1

Halving and Doubling

Butterfly All-Reduce

* Butterfly Reduce

GPUO GPU 1

* Butterfly Reduce

* log,N rounds

e S data per round

 Total Traffic per-GPU
* log,N * S

<>

Butterfly Reduce: Utilizing bidirectional bandwidth

Rabenseifner All-Reduce

e Rabenseifner Reduce

0 j_{F 0 _;_{fﬁ * Total Traffic per-GPU
Zj!é’[— — — —

7 % S % % s % % A it A2 * 2]log,N rounds
£S5 T}—‘? ?}-? Aggregation Different traffic load

at every round
@\ @ @ * Total traffic volume:

[a)
/B S1+S4 .. 45 ~
— e TS 2G+5+)=
2 2 (AT — M Bz id 42) 2N-1g
__{ 3 Collection N

Rabenseifner Algorithm (an enhanced naive halving-doubling)
(Allreduce B AN ERRAINIERTTIENMAR)

Cross-Comparison

icati “start-up” transmission efficienc
« Communication Cost start-up” delay y

e Assumption: each GPU can send\xnd rece%a simultaneously

* Classical a-B model: latency = a + ,6’ — «—— | Message size/bandwidth

Large data chunk aggregation
Ring 2(N-1) 2S(N-1)/N 2(N-1)*(a + S/B) = Relatively small # of GPUs
= Not suitable for short chunks
= Ease of implementation
= Utilizating bidirectional links

= Relatively smaller data chunk
Rabenseifner 2 [log N] 2S(N-1)/N 2[log N|a+2(N-1)S/N*[= Large # of GPUs
= Periodically changing communication
pairs

Challenge of Scaling Out

* Two-tier spine-leaf topology

Spine

Low bandwidth

cross machines ==

Leaf

Servers

High bandwidth
inside a machine

{ Network congestion, load balancing J

Topology-aware CCL

All-Reduce for LLM training

* Each company develops its own collective communication libraries
« NCCL (NVIDIA CCL)
MSCCL (Microsoft CCL)

==

* Gloo
« HCCL (Huawei CCL) Tailored for their own harware,

. B datacenter network topology, etc.
e ACCL (Alibaba CCL)

e TCCL (Tencent CCL)
 Many to be added

All-Reduce for LLM training

e Hierarchical All-Reduce

mm ® 0 @

r1rye b et

intra-node reduce inter-node all-reduce intra-node broadcast
(NVLINK) (RDMA) (NVLINK)

v
-
o’
v

e
RERES

S

{Highly Scalable Deep Learning Training System with Mixed-Precision: Training ImageNet in Four Minutes)

All-Reduce for LLM training

e 2D Torus All-Reduce

XPU(1,0) XPU(2,0) XPU(3,0)

t&[a] XPU(0,0) e e
CXL/CCIX/NVLINK '\ Y \ \

XPU(0,1) ; el'. el'. :
e # 3 | E
RDMA | | ; |
l o @@ @@

XPU(4,0) XPU(5,0) XPU(6,0)

XPU(7,0)

L XPU(7,1)

1 XPU(7,2)

0—00090

' Ll ! 1
' 1 I !
J ! I I
XPU(0,3) ' ' ' '
’ I I I I
, , i ! XPU(7,3)
I I 1 1
1 I ! I
oy ! I ' '
S ' wee 1 “ee I “ee I
! ' ! ! ' ee wee
!] I I ! I /
! ' ! ! ' I '

Horizontal: intra-machine GPU interconnect via NVLink/CXL
Vertical: inter-machine GPU interconnect via RDMA NICs

Intra-machine NVLink/CXL; Inter-machine RDMA (= 2 NICs)
Designed by SONIC

Step 1: Intra-ring Reduce-Scatter

I: @ &
@ @

Step 2: Inter-ring All-Reduce

Step 3: Intra-ring All-Gather

(ST IR REE R ESBETINGE) 1T

All-Reduce for LLM training

e 2D Mesh All-Reduce

XPU(1,0) XPU(2,0) XPU(3,0) XPU(4,

; \
\
\
\
\
i
'
'
A
'
'
'
'
'
'
'
'
i
'
'
|
1
i

XPU(5,0) XPU(6,0)

\ \ \ \
\ \ \ \
1 \ \ \
\ \ \ \
1 v A \
\ \ \ v
' ' ' '
' ' ' '
i i . .
1 ' \ v
' ' ' '
' ' ' '
' ' ' i
1 ’ ' '
' ' ' '
' ' '
' ' '
' | '
' . '
' ' '
' ' '
' ' i
' ' '
' I '
' ' '
' |
1 '

o XPU(0,0)
CXL/CCIX/NVLINK

\
XPU(0,1) : XPU(7,1)
Y1 ', (
RDMA '
: :
: !
1 XPU(0,2) : ' PU(7,2)
| | i
XPU(0,3) ,,‘ ,.‘ ‘, XPU(7,3)
h | h
[A !
SN | S
XPU(O,N) é XPU(7,N)

2D Mesh: removing links connecting the first
and the last GPUs of each row and column

Step 1: Intra-Ring All-

Reduce

Step 2: Inter-Ring All-
Reduce

(2N GERANNBEERESBERINEE) T

All-Reduce for LLM training

e 3D Torus All-Reduce

3D Torus (3-ary 3-cube)
Initially designed by IBM

TPUv4i board with 4 chips that are connected by ICI. _
5D, 6D Torus in HPC areas

{TPU v4: An Optically Reconfigurable Supercomputer for Machine Learning with Hardware Support for Embeddings)

Distributed LLM Training: Outline

e Data Parallelism

e Parameter-Server

e All-Reduce

* Memory optimization

* Model Parallelism
* Pipeline Parallelism

* Tensor Parallelism

e Sequence Parallelism

* Mixture of Experts

LLM training: DP with Memory Optimization

* Retrospect: GPU HBM Content During Training

* An example of GPT-3 175B

N * Optimizer States
Training
Gontent « 32-bit Parameter (700 GB)
« Adam Moment (700 GB)

Static Dynamic .
Content Content Adam Variance (700 GB)
e 16-bit Parameter (350 GB)
Parameters | || Gradients | || GRS’ | [Activations | | Buffers e 16-bit Gradient (350 GB)

Activations (depending on batch size)

Buffer and Fragmentation

LLM training: DP with Memory Optimization

* How to put an elephant into a fridge?

[Optimizer States J

|
How do you fit an
elephant into a fridge?

I -

How do you fit an
elephant into a fridge?

LLM training: DP with Memory Optimization

* How to put an elephant into a fridge?

Sharding the elephant into four partitions, and
each GPU HBM holds one chunk!

’ 3 "m 1 = _ =¢

Ho How do you fit an Hg
ele elephant into a fridge? elg

4 4

GPUO GPU1

GPU2 GPU3

LLM training: DP with Memory Optimization

e ZeRO (Zero Redundancy) optimization: an overview

GPU, GPUY; GPU ;4 7.5B Model Memory
Baseline oo coe 120 GB
ZeRO-1 P, vou vou 31.4 GB
ZeRO-2 Posis AR s 16.6 GB
ZeRO-3 - i oo 19 GB
' Parameters Gradients Optimizer States

HBM usage with DP degree 64
{Fit More and Train Faster With ZeRO via DeepSpeed and FairScale)

LLM training: DP with Memory Optimization

 /eRO-1&2
* forward is OK because each GPU holds the complete parameter v
* Backward is OK because of the same reason v
* AllIReduce = ReduceScatter + AllGather
* ReduceScatter is OK J
* Update optimizer state shards J

* Incomplete optimizer states at every GPU
* Update parameter shards \/

* AllGather remaining parameter shards to assembly the complete parameter J

LLM training: DP with Memory Optimization

* /eR0O-2 (All-Reduced is substituted by Reduce-Scatter + All-Gather)

parameters

Optimizer FP&BP Gradient Update| params Params
sharded DP All-Reduce / R.-S. All-Gather Optimizer
P e S T SRS 3 e e ane | * Reduce-Scatter
| GPUT |1 GPU2 | | GPU3 :]
i i i i i = i * Green shards are global gradients after
N N 22 | | reduce-scatter
i r| : i — i i : ;3 i * Pink shards are optimizer partitions hosted
| T iy i g & — | at each GPU/machine
i i | i | i * Update OS shards and partial parameters
! W [] [
| I A W ;) W [
| - : | * All-Gather
i X1 i i X2 i i X3 i * Each GPU acquires complete model

—— ————————————]

LLM training: DP with Memory Optimization

e ZeRO-3 (parameter, gradient and optimizer sharding)

Forward is NOT OK because of incomplete parameter
* Need to fetch parameter shards from other GPUs via BROADCAST

Backward is NOT OK because of incomplete parameter
* Need to fetch parameter shards from other GPUs via BROADCAST again

Aggregating local gradient shards to obtain global gradient shards
* Reduce Scatter is OK

Updating optimizer shards and parameter shards are OK

* No “AllGather” operation afterwards

LLM training: DP with Memory Optimization

* /eR0O-3: An animation (Implementation on DeepSpeed could be somewhat different)

e All-Gather

* Collecting parameters for
forward propagation

e All-Gather

e Collecting parameters for
back propagation

* Reduce-Scatter
* Obtaining global gradient

e Update OS and param.

Source: microsoft official site

LLM training: DP with Memory Optimization

e 7eR0O-3: DeepSpeed Implementation

* Replacing broadcast by allreduce

* Intra-layer partitioning instead of inter-layer partitioning

GPU, ---* GPU,

GPU, GPU;

Broadcast

Intra-layer partitioning, and AllGather

LLM training: DP with Memory Optimization

PCle communications

e 7eRO Offload back and forth
i
GPU I cru ,’; |« Store OS in CPU memory
SM Mem /g,;e;/ * ~1TB vs 80GB HBM

Mem
/
'—'—- { , * Connection speed
FP f o -)
l Update ,__’- e PCle 5.0 (16 lanes) ~ 64GB/s

 NVIDIA H100 NVLink 4.0 ~
" =
—/

unidirectional 450GB/s

e GPU<—>CPU bottleneck

\)

LLM training: DP with Memory Optimization

[GpU I cpu
* ZeRO Offload: workflow sM Mem Cores Mem
* Forward propagation at GPU HBM S e s
. ‘_—I— Params [« Update |« Params
* Backward propagation at GPU HBM
* Optimizer state is at CPU main memory 8P g { Gradient
* Transmit gradient to from GPU to CPU X =

Update parameter at CPU memory

* Transmit new parameter from CPU to GPU, and repeat

Update optimizer states at CPU memory (which is relatively slow)

LLM training: DP with Memory Optimization

Where are these bubbles coming from?
* Pros and Cons .

* Training GPT2 on A100: reduced GPU utilization

100 99'-"-“1% r—-lﬂ-vﬂqpﬂlp-mmr- 100 ;v—\ —‘ ~—| m r‘
80 80
o\o o\o Rl Bl oBC B B BB ol ol ol Ll ol et B b B
= 60 = 60
2 S
8 8
= 40 = 40
g g [
20 20
— GPU Utilization — GPU Utilization
0 -~== Average GPU Util 0 _J ¥ | ==~ Average GPU Util
0 5 10 15 20 0 1 2 3 4 5
time/s time/s

Pytorch ZeRO-Offload

LLM training: DP with Memory Optimization

e ZeRO Offload Variants

ndo

VY NdD
Dﬂa—) Surppoquuy |

L€ Jepfoua |
| 1opooug |
Y
[Jopoouy |
Y
7 10poouy |

0 Jopoouy |
Y
" | 1 Iopoouy |
A
| 7 1opoouy |

Al

Secondary storage (NVMe SSD) Secondary storagé (NVMe SSD)

STRONGHOLD stores some DNN layers in the GPU memory and
swapping out the finished layer states to the CPU RAM.

{STRONGHOLD: Fast and Affordable Billion-Scale Deep Learning Model Training)

LLM training: DP with Memory Optimization

. BP Bubble! FP Bubble!
* ZeRO Offload Variants step N e \ | sepnet e
- »
Computation Update ' FP&BP [Update FP&BP
Communication Params Gradients Params Gradients
GPU
memory Eliminating bubbles
BP Bubble!
step n-1 \ step n step n+1 time
MemkFerry MemkFerry
Computation Update Hybrid Update Hybrid
FP&BP FP&BP
Communication SEInEl Gradients “EInfEl Gradients
params params
DHA mode: GPU SMs compute

tensors stored in CPU memory Eliminating bubbles

{MemeFerry: A Fast and Memory Efficient Offload Training Framework with Hybrid GPU Computation)

LLM training: DP with Memory Optimization

e 7eRO Infinity

Network

AllGather ReduceScatter

1 X data movement}

(1/DP) x data movement}

G(o) G(x) 6(2) G(‘J)

Model States

Slow Memory Slow Memory

& Layer O) (CPU + NVMe) (CPU + NVMe)
puoneis P Opimizer
el GG GE L GG B

e Bandwidth
e GPU > CPU > NVMe

* Read Data
e Read parameter using All-
Gather
* Data Path

* CPU - GPU
* NVMe - CPU - GPU

{ZeRO-Infinity: Breaking the GPU Memory Wall for Extreme Scale Deep Learning)

LLM training: DP with Memory Optimization

e 7eRO++: Low-bandwidth Scenario

* Quantized Weight Communication
[Machine 0 }[Machine 1 }{ Machine 0 1[Machine 1 } « FP16 weight -> INT8 weight before All-Gather

* block-quantization based all-gather in FP

|
|
KX i
|
E L | m ﬂj e INT8 -> FP16 after All-Gather
o I | g | * Hierarchical Partitioning
i | * (trying to) eliminate the inter-node all-gather
2 | | ﬂ * Quantized Gradients Communication
' : « Standard Reduce-Scatter involves a lot of
All-gather on pr(izm;roy \3~)eight partitions : All-gather on(;eczo'ndzar;(;vei)ght partitions quantization and dequantization steps
eRO- pZ in ZeRO++
| * |leverages all-to-all collectives to implement
Hierarchical partitioning (not diving into details) quantized reduce- scatter

{ZeRO++: Extremely Efficient Collective Communication for Giant Model Training)

LLM training: DP with Memory Optimization

* Retrospect: GPU HBM Content During Training

* An example of GPT-3 175B

i * Optimizer States
Training
Gontent « 32-bit Parameter (700 GB)

]
I I

r m « Adam Moment (700 GB)
Static Dynamic .

Content Content Adam Variance (700 GB)

' ’ 16-bit Parameter (350 GB)
16-bit Gradient (350 GB)

| | : |
lParameters l Gradients l Og’iiant\eizser lActivations l Buffers
Activations (depending on batch size)

Buffer and Fragmentation

LLM training: DP with Memory Optimization

Output of a previous layer, intermediate variable]

\

 Activation is non-negligible

* Forward propagation y=Wx+b
dlL. dL

* Backward propagation _ 4
aw dy '\[Cannot be discarded after FP]

e Size of activation

e Standard transformer: b - batch size, s - sequence length, h - hidden layer dimension

bsh * 2 Bytes

N

MX :Jeaury

In-total: 5abss + 8sbh

LLM training: DP with Memory Optimization

Output of a previous layer, intermediate variable]

\

 Activation is non-negligible

* Forward propagation y=Wx+b
dlL. dL

* Backward propagation _ 4
aw dy '\[Cannot be discarded after FP]

e Size of activation

e Standard transformer: b - batch size, s - sequence length, h - hidden layer dimension

bsh * 2 Bytes

N

3sbh: Linear layer
+ dropout layer

MX :Jeaury

In-total: 5abss + 11sbh

LLM training: DP with Memory Optimization

* Activation is non-negligible sbsh |
s
11bsh+5assb 8bsh
| Zbih
— =
33
> mn 3
- S &
3 = o o
B = a § é
g 8 E g | |5 o s |||I3 1 o| |5
o?: g ﬁ > E 9 = 'r<n v B () 8 g = }% vy
a . = o > * = = o > o
gi’_ Oz*.'zl-?-g#& g+?ﬁgi|—f-§#&ﬂg* z
o § | [1 [B ELF I
- & & g
-

In-total: 5abss + 34sbh

From Zhihu blogger and {Reducing Activation Recomputation in LLMs)

LLM training: DP with Memory Optimization

e Activation is non-negligible
* b: 3.2M tokens/sequence length, s: 2048 tokens, h: 12288, I: 96 layers

e Activation size ?

* Full activation re-computation: only keeping the initial input and recompute
everything
* Minimal memory occupation
* Prolonged training time (doing forward propagation once again) by 30%~40%
e Goal of strategic recomputation (not the scope of this class)
* Significantly reducing memory occupation while slightly increasing training time

* Softmax and Softmax dropout are more suitable to be re-computed

https://lambda.ai/blog/demystifying-gpt-3 {Reducing Activation Recomputation in LLMs)

Percent of Full Activations

LLM training: DP with Memory Optimization

e Advantage of Re-computation

80%

m + sequence parallel

60%
m + selective activation
40% recompute
+ sequence parallel and

20% selective activation recompute

. l . m full activation recompute

o N
22B

175B 530B 1T
Model Size

Recomputation saves memory footprint

{Reducing Activation Recomputation in Large Transformer Models)

150%

125%
100%
75%
50%
25%
0%

full present full present full present full present
recompute work recompute work recompute work recompute work

% of baseline layer execution time

22B 1758 5308 1T

mfoward % ™ backward % M recompute %

Recomputation brings more compute loads

Thanks!

Example Codes

* Training BERT model with distributed data parallel via Ring AlIReduce

import os
import socket
import argparse

import torch

import torch.distributed as dist

import torch.multiprocessing as mp

from torch import nn

from torch.optim import Adam

from torch.utils.data import Dataloader, DistributedSampler, Dataset
from transformers import BertConfig, BertModel

class FakeBertLikeDataset(M
def (self, seq_len=128, vocab_size=30522, length=10000):
self.seqg_len = seq_len
self.vocab_size = vocab_size
self.length = length

def (self):
return self.length

Example Codes

* Training BERT model with distributed data parallel via Ring AlIReduce

def (self, idx):
input_ids = torch.randint(®, self.vocab_size, (self.seq_len,), dtype=torch.long)
attention_mask = torch.ones(self.seq_len, dtype=torch.long)

label = torch.tensor(@, dtype=torch.long)
return input_ids, attention_mask, label

def (rank, world_size, backend='nccl', port=12355):

hostname = socket.gethostname()

init_method = f'tcp://{hostname}:{port}"'

dist.init_process_group(backend=backend, init_method=init_method,
rank=rank, world_size=world_size)

def ():
dist.destroy_process_group()

Example Codes

* Training BERT model with distributed data parallel via Ring AlIReduce

class SimpleBertLike(nn.Module):

def (self, vocab_size=30522, hidden_size=256, num_heads=4, seq_length=128, num_layers=2)
super().__init__()
self.embedding = nn.Embedding(vocab_size, hidden_size)
self.position = nn.Parameter(torch.zeros(1l, seq_length, hidden_size))
encoder_layer = nn.TransformerEncoderLayer(d_model=hidden_size, nhead=num_heads, dim_feedfor\
self.encoder = nn.TransformerEncoder(encoder_layer, num_layers=num_layers)
self.classifier = nn.Linear(hidden_size, 2) Ly], g

def (self, input_ids, attention_mask):

x
1]

self.embedding(input_ids) + self.position

x
]

self.encoder(x.transpose(9,1), src_key_padding_mask=(attention_mask==0)).transpose(9,1)

cls_token = x[:, 0, :]
logits = self.classifier(cls_token)
return logits

Example Codes

* Training BERT model with distributed data parallel via Ring AlIReduce

def (rank, world_size, port, epochs=3, batch_size=32, lr=le-4):
setup_distributed(rank, world_size, port=port, backend='nccl')
device = torch.device(f'cuda:{rank}' if torch.cuda.is_available() else 'cpu')

SimpleBertLike().to(device)
model = nn.parallel.DistributedDataParallel(model, device_ids=[rank])

model

dataset = FakeBertLikeDataset()
sampler = DistributedSampler(dataset, num_replicas=world_size, rank=rank, shuffle=True)
loader = Dataloader(dataset, batch_size=batch_size, sampler=sampler, num_workers=2)

criterion = nn.CrossEntropylLoss()
optimizer = Adam(model.parameters(), lr=1r)

for epoch in range(epochs):

sampler.set_epoch(epoch)

model.train()

epoch_loss = 0.0

for batch in loader:
input_ids, attention_mask, label = [b.to(device) for b in batch]
optimizer.zero_grad()
logits = model(input_ids, attention_mask)
loss = criterion(logits, label)
loss.backward()
optimizer.step()

Example Codes

* Training BERT model with distributed data parallel via Ring AlIReduce

epoch_loss += loss.item()

if rank == 0:
print(f"[Epoch {epoch+1}/{epochs}] Loss: {epoch_loss/len(loader):.4f}")

cleanup()

def ():
parser = argparse.ArgumentParser()
parser.add_argument('--world_size', type=int, required=True, help='Total number of processes (wo:
parser.add_argument('--rank', type=int, required=True, help='Rank of this process')
parser.add_argument('—-—port', type=int, default=12355, help='Init method port for rendezvous')
parser.add_argument('—--epochs', type=int, default=3)
parser.add_argument('—--batch_size', type=int, default=32)
return parser.parse_args()

def ():
args = parse_args()
train(rank=args.rank, world_size=args.world_size, port=args.port,
epochs=args.epochs, batch_size=args.batch_size)

if __name__ == '__main__"':
main()

Example Codes

 Single machine two GPUs:

» Using torchrun to launch 2 processes
{torchrun --standalone --nproc_per_node=2 train_ddp_bert_ring.py -—worId_size=2]

--rank=0 --epochs=3

torchrun --standalone --nproc_per_node=2 train_ddp_bert_ring.py --world_size=2
--rank=1 --epochs=3

* Multiple machines eight GPUs:
« Two machines, each having four GPUs, i.e. world_size = 8
 On two machines:

/torchrun --nnodes=2 --nproc_per_node=4 --rdzv_id=bert_job -- A
rdzv_backend=c10d train_ddp_bert_ring.py --world_size=8 --rank=0 --port=12355

\Increasing rank id Y,

