第6章

矩阵的Kroneker积和Hadamard积

The Kroneker Product and Hadamard Product

概述:

内容:

- · 介绍Kroneker积和Hadamard积
- 讨论
 - K-积, H-积的运算性质、之间的关系
 - K-积与矩阵乘积的关系
 - K-积, H-积的矩阵性质
 - K-积的矩阵等价与相似关系
- 介绍应用
 - 向量化算子
- 重点: K-积及其应用

6.1 Kroneker积和Hadamard积的定义

- 定义6.1 (P.136)
 - 设矩阵 $A=[a_{ij}]_{m\times n}$ 和 $B=[b_{ij}]_{s\times t}$ 矩阵,则A,B的

$$A \otimes B = [a_{ij}B]_{m \times n}$$

Kronecher被定义为A \otimes B: $A = \begin{bmatrix} a_{ij} & a_{ij} & a_{ij} \\ a_{ij} & a_{ij} & a_{ij} \end{bmatrix}$ $A \otimes B = \begin{bmatrix} a_{ij} & B \end{bmatrix}_{m \times n}$ $A \otimes B = \begin{bmatrix} a_{ij} & a_{ij} & a_{ij} \\ a_{ij} & a_{ij} & a_{ij} \end{bmatrix}$ $A \otimes B = \begin{bmatrix} a_{ij} & a_{ij} & a_{ij} \\ a_{ij} & a_{ij} & a_{ij} \end{bmatrix}$ $A \otimes B = \begin{bmatrix} a_{ij} & a_{ij} & a_{ij} \\ a_{ij} & a_{ij} & a_{ij} \end{bmatrix}$ $A \otimes B = \begin{bmatrix} a_{ij} & a_{ij} & a_{ij} \\ a_{ij} & a_{ij} & a_{ij} \end{bmatrix}$ $A \otimes B = \begin{bmatrix} a_{ij} & a_{ij} & a_{ij} \\ a_{ij} & a_{ij} & a_{ij} \end{bmatrix}$ $A \otimes B = \begin{bmatrix} a_{ij} & a_{ij} & a_{ij} \\ a_{ij} & a_{ij} & a_{ij} \end{bmatrix}$ $A \otimes B = \begin{bmatrix} a_{ij} & a_{ij} & a_{ij} \\ a_{ij} & a_{ij} & a_{ij} \end{bmatrix}$ $A \otimes B = \begin{bmatrix} a_{ij} & a_{ij} & a_{ij} \\ a_{ij} & a_{ij} & a_{ij} \end{bmatrix}$ $A \otimes B = \begin{bmatrix} a_{ij} & a_{ij} & a_{ij} \\ a_{ij} & a_{ij} & a_{ij} \end{bmatrix}$ 的Hadamard被定义为A。B:

$$A \circ B = [a_{ij}b_{ij}]_{m \times n}$$

- K-积, H-积的基本结果: (A&B)(A¯'\Ø B¯') = (A A¯') Ø(B B¯')
 18 1 = 1
 - A和B中有一个为零矩阵,则A⊗B=0, A∘B=0
 - |⊗|=|, |o|=|
- 若A为对角矩阵,则A⊗B为分块对角矩阵,A∘B为 • K-积的基本性质 对角矩阵。(465)&c=
- - 定理6.1 设以下矩阵使计算有意义,则
 - (kA) ⊗B=A⊗ (kB) A⊗B = (an B an B)
 - $A \otimes (B+C) = A \otimes B + A \otimes C$ $(A \otimes B) \otimes C = A \otimes (B \otimes C)$ $(A \otimes B) \otimes C = A \otimes (B \otimes C)$ $(A \otimes B) \otimes C = A \otimes (B \otimes C)$
 - $(A \otimes B)^{H} = A^{H} \otimes B^{H}$ $(A \otimes B)^{H} = B^{H} \otimes A^{H} \times$ = $A^{H} \otimes B^{H}$
 - A⊗B ≠ B⊗A
 - 若方阵A,B可逆,则(A⊗B)-1 = A-1⊗B-1

- · K-积与矩阵乘法
 - 定理6.2 (P.138) 设矩阵A, B, C, D使得下列运算有意义,则有 G (A⊗B) (C⊗D)= (AC) ⊗ (BD)
 - 一意义。
 建程的echer积和矩阵乘法的相互转换。
 (CII)(GI)(GI)
 一特别情形:设备EFmxmin),BCUBOFMX的,则可以
 - $\stackrel{\text{\tiny{A}}}{\rightarrow} A \otimes B = (I_m^* \otimes B)^n (\stackrel{\text{\tiny{A}}}{\rightarrow} I_n) = (\stackrel{\text{\tiny{A}}}{\rightarrow} E_n)^n (I_m^{\otimes} \otimes B)$

$$F_{ij} = ((A \otimes B) ((B \otimes D))_{ij} = \sum_{k=1}^{n} (A \otimes B)_{ik} \cdot ((B \otimes D))_{kj} = \sum_{k=1}^{n} (\alpha_{ik} B) ((kj \otimes D))_{ij} = \sum_{k=1}^{n} (\alpha_{ik} B) ((kj \otimes D))_{ij}$$

· H-积的基本性质:

设A,B为同阶矩阵,则

- $-A \circ B = B \circ A$
- (kA) \circ B=A \circ (kB)
- $-A\circ (B+C) = A\circ B+A\circ C$
- \checkmark (A \circ B) \circ C=A \circ (B \circ C)
- \checkmark (A \circ B) H =A H \circ B H
- · Kronecher和Hadamard的关系:

(A = B); = (a'yb';) = a"; · b"; = (A+0B") i;

设
$$\mathbf{A} = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$$
, $\mathbf{B} = \begin{bmatrix} -1 & 5 \\ 4 & -3 \end{bmatrix}$, 计算 $\mathbf{A} \otimes \mathbf{B}$, $\mathbf{B} \otimes \mathbf{A}$, $\mathbf{A} \circ \mathbf{B}$ 和 $\mathbf{B} \circ \mathbf{A}$.

$$\mathbf{A} \otimes \mathbf{B} = \begin{bmatrix} 1\mathbf{B} & 2\mathbf{B} \\ 3\mathbf{B} & 4\mathbf{B} \end{bmatrix} = \begin{bmatrix} -3 & -3 & 8 & -6 \\ -3 & 15 & -4 & 20 \\ -3 & 15 & -4 & 20 \\ 16 & -12 \end{bmatrix},$$

$$\mathbf{B} \otimes \mathbf{A} = \begin{bmatrix} -\mathbf{A} & 5\mathbf{A} \\ 4\mathbf{A} & -3\mathbf{A} \end{bmatrix} = \begin{bmatrix} -3 & -4 & 15 & 20 \\ -3 & 16 & -9 & -12 \end{bmatrix},$$

$$\mathbf{A} \circ \mathbf{B} = \begin{bmatrix} -1 & 10 \\ 12 & -12 \end{bmatrix}, \quad \mathbf{B} \circ \mathbf{A} = \begin{bmatrix} -1 & 10 \\ 12 & -12 \end{bmatrix}.$$

对比A∘B与A⊗B的第一行第一列、第四行第四列交叉的元素!

$$(A \otimes B)(C \otimes D) = (Ac) \otimes (BD)$$

Kronecher和Hadamard的关系: air lange 一定理6.3 (P. 139) air lange

定理 6.3 设 $A, B \in F^{n \times n}$,集合 $S = \{1, n+2, 2n+3, 3n+4, \dots, (n-1)n+n=n^2\}$,

则 Hardamard 积 $A \circ B$ 是在 Kronecker 积 $A \otimes B$ 中同时取 S 中的数对应的行和列得到

的子矩阵,记为
$$A \otimes B(S) = A \circ B$$
.

$$e_{1}\otimes e_{1} = \begin{cases} 0 \\ 0 \\ 0 \\ 0 \end{cases}$$
 $e_{1}\otimes e_{2} = \begin{cases} 0 \\ 0 \\ 0 \\ 0 \end{cases}$
 $e_{1}\otimes e_{2} = \begin{cases} 0 \\ 0 \\ 0 \\ 0 \end{cases}$
 $e_{2}\otimes e_{3} = \begin{cases} 0 \\ 0 \\ 0 \\ 0 \end{cases}$
 $e_{3}\otimes e_{3} = \begin{cases} 0 \\ 0 \\ 0 \\ 0 \end{cases}$
 $e_{4}\otimes e_{5} = \begin{cases} 0 \\ 0 \\ 0 \\ 0 \end{cases}$
 $e_{5}\otimes e_{5} = \begin{cases} 0 \\ 0 \\ 0 \\ 0 \end{cases}$
 $e_{6}\otimes e_{5} = \begin{cases} 0 \\ 0 \\ 0 \\ 0 \end{cases}$

6.2Kronecher积和Hadamard积的性质

- Kronecher积的矩阵性质
 - 定理6.4 设矩阵使下列运算有意义.则
 - · 当A, B分别为可逆矩阵时, A⊗B为可逆矩阵, 而且有 $(A \otimes B)^{-1} = A^{-1} \otimes B^{-1}$
 - 当方阵A∈F^{m×m}, B∈F^{n×n}时, 方阵A⊗B∈F^{mn×mn}的行

$$|A \otimes B| = |A|^{6}|B|^{6}$$

$$|A \otimes B| = |A|^{6}|B|^{6}$$

$$|A \otimes B| = |A|^{6}|B|^{6}$$

• Kronecher与矩阵等价、相似关系 定理6.5

- ◆设矩阵A, B, 为同阶的等价矩阵,则(A⊗I)等价于(B⊗I)
- ◆设方阵A相似与J_A,方阵B相似于J_B,则(A⊗B)相似于(J_A⊗J_B)

$$A = PJAP^{-1} B = QJBQ^{-1}$$

$$A \otimes B = (PJAP^{-1}) \otimes (QJBQ^{-1})$$

$$= (PQ) (JAOJB) (PQQ^{-1})$$

$$= (PQQ) (JAOJG) (PQQ)^{-1}$$

• K-积特征值和特征向量

定理6.6 设A \in F^{m×m}的特征值特征向量分别是 λ_i , x_i , $B\in$ Fⁿ×n的特征值、特征向量分别是 μ_i , y_i , 则

- ✓ (A⊗B) 的特征值是 $λ_iμ_j$ 。特征向量是($x_i⊗y_j$)。
 - (A⊗I) +(I⊗B) 的特征值是 $λ_i$ + $μ_j$,特征向量是(x_i ⊗ y_i)

◆更一般的结果:

定理6.7 的特征值为

$$P(A,B) = \sum_{i,j=0}^{T} c_{ij} A^{i} \otimes B^{j}$$

$$P(\lambda_r, \mu_t) = \sum_{i,j=0}^{T} c_{ij} \lambda_r^{i} \mu_t^{j}$$

- Kronecher积的矩阵函数性质
- 定理6.8 (P.143) 设是f(z)解析函数, f(A)

$$-f(I\otimes A)=I\otimes f(A)$$

$$-f(A\otimes I)=f(A)\otimes I$$

$$f(z) = \sum_{k=0}^{N} C_k z^k$$

$$f(1 \otimes A) = \sum_{k=0}^{N} C_k (1 \otimes A)^k$$

$$\Rightarrow -10 \left(\sum_{k=0}^{N} C_k A^k\right) ?$$

- · Kronecher积的矩阵函数性质
- 定理6.8 (P.143) 设是f(z)解析函数, f(A) 有意义,则
 - $-f(I\otimes A)=I\otimes f(A)$
 - $-f(A\otimes I) = f(A)\otimes I$

 $G_x = M \lambda + \frac{si}{1} \lambda_s + \dots$

• 特例:

$$- e^{I_m \otimes A} = I_m \otimes e^A$$

$$- e^{A \otimes I_m} = e^A \otimes I_m$$

例设A∈F^{m×n}, B∈F^{s×t}, 证明
 rank (A⊗B) = rank (A) rank (B)

$$A = \begin{bmatrix} 3 & -1 \\ 0 & 1 \end{bmatrix}$$

$$B = \begin{bmatrix} 2 & 0 \\ 1 & -1 \end{bmatrix}$$

- ◆求(A⊗B)的特征值和特征向量
- ◆求[(A⊗I) +(I⊗B)]的特征值和特征向量

例题3:证明对任何方阵,有

$$e^{A \oplus B} = e^A \otimes e^B = e^B \otimes e^A$$

6.3 矩阵的向量化算子和K-积

- · 向量化算子Vec
 - 定义: 设 $A=[a_{ij}]_{m\times n}$ 则 $Vec(A)=(a_{11}a_{21}...a_{m1};\ a_{12}a_{22}...a_{m2};\ ...;\ a_{1n}a_{2n}...a_{mi})^T$
 - 性质:
 - Vec是线性算子:
 Vec (k₁A+k₂B) = k₁Vec (A) + k₂ Vec (B)
 - 2 定理6. 10 (P. 146) Vec(ABC) =(C^T⊗ A) VecB
 - 3 $Vec(AX) = (I \otimes A) VecX$
 - 4 $Vec(XC) = (C^T \otimes I) VecX$

$$B = (G_1, G_1, \dots, G_S), C = (C_1, C_1, \dots, C_n)$$

$$ABC = A \cdot (G_1, G_1, G_2, G_3), A = A \cdot (\sum_{j=1}^{S} C_{1j} B_j) = \sum_{j=1}^{S} C_{1j} B_j \dots \sum_{j=1}^{S} C_{nj} B_j)$$

$$= (A \cdot \sum_{j=1}^{S} C_{nj} B_j), A = (C_{11} C_{12} \dots C_{1S}) = (A \cdot (C_{11} C_{12} \dots C_{1S})) = (A \cdot (C_{11} \dots C_{1S})) = (A \cdot (C$$

用向量化算子求解矩阵方程

Vec (ABC) = (CTOA) vec(B)

思想:用Vec算子,结合Kronecher积将矩阵方程化为线性方程组求解。

1. $A \in F^{m \times m}$, $B \in F^{n \times n}$, $D \in F^{m \times n}$, AX + XB = D

分析:

Ax+xB=D

 $AX + XB = D \Leftrightarrow (I \otimes^{t} A + B^{t} \otimes I)^{t} Vec X = Vec D$

- G= $(I \otimes A + B^T \otimes I)$, $= 1 \otimes A \vee ec(X) + A^T \otimes 1 \vee ec(X)$
- · 方程有惟一解的充要条件是G办严逆矩阵,即A和-B没有共同的特征值。

用向量化算子求解矩阵方程

• 2, A, $X \in F^{n \times n}$, AX - XA = kX

分析:

 $AX-XA=kX \Leftrightarrow (I \otimes A - A^T \otimes I) VecX = kVecX$

- $\not\models$ (| \otimes A A^T \otimes |),
- 方程(kI-H)y=0 有非零解的充要条件是k为H的特征值, $k=\lambda_i-\lambda_i$ 。

例题2 求解矩阵方程AX - XA= - 2X,
$$A = \begin{bmatrix} 1 & 0 \\ 2 & 3 \end{bmatrix}$$

用向量化算子求解矩阵方程

- 3. A, B, D, $X \in F^{n \times n}$, AXB=D
- 分析: AXB=D ⇔ (B^T ⊗ A) VecX =VecD
- $\# L = B^T \otimes A$,
- ** 方程有惟一解的充要条件是L为可逆矩阵. 例题3 求解方程 $A_1XB_1+A_2XB_2=D$

$$A_1 = \begin{bmatrix} 2 & 2 \\ 2 & -1 \end{bmatrix} \qquad B_1 = \begin{bmatrix} 1 & 0 \\ -1 & 1 \end{bmatrix}$$

$$A_2 = \begin{bmatrix} 0 & 1 \\ -2 & -1 \end{bmatrix} \qquad B_2 = \begin{bmatrix} 0 & 2 \\ -1 & 2 \end{bmatrix} \qquad D = \begin{bmatrix} 4 & -6 \\ 0 & 8 \end{bmatrix}$$

例 设A \in C^{m×m}, B \in C^{n×n}, D \in F^{m×n}, 证明谱半 径 ρ (A) $\cdot \rho$ (B) <1 时方程:

X=AXB+D

的解为

$$X = \sum_{k=0}^{\infty} A^k DB^k$$

Vec(X) = Vec (AxB) + Vec(D)

(J-BTOA) Vec(X) = Vec(D)