

矩阵论及其应用

主讲老师:徐跃东

2022-2023学年第二学期

矩阵分解

□矩阵分解:

- ➤常见矩阵标准型及分解 三角分解 满秩分解 谱分解
- ▶Schur分解与正规矩阵
- ▶奇异值分解
- ▶应用范例

Schur分解与正规矩阵

- □概念回顾
 - ▶矩阵对角化

可对角化的一般矩阵

$$A = P\Lambda P^{-1}$$

实对称矩阵

$$A = P\Lambda P^{-1} = P\Lambda P^{T}$$

什么样的矩阵可以具有和实对称矩阵类似的分解?

□定理: A∈C^{n×n}为可逆矩阵,则存在酉矩阵U和主对角线上 元素皆正的上三角矩阵R,使得A=UR。 (称A=UR为矩阵 A的酉分解)

□证明:

把矩阵A按照列分块 $A=(\alpha_1,\alpha_2,\cdots,\alpha_n)$,则向量组 $\alpha_1, \alpha_2, \cdots, \alpha_n$ 线性无关,由Schmidt正交化方法可得到 $\beta_1 = \alpha_1$ $\beta_2 = \alpha_2 - k_{21}\beta_1$ $\beta_n = \alpha_n - k_{n, n-1}\beta_{n-1} - \cdots - k_{n-1}\beta_{1}$ 其中 k_{ij} =(α_i , β_i)/(β_i , β_i), (j<i), 即有 $\alpha_1 = \beta_1$ $\alpha_2 = k_{21}\beta_1 + \beta_2$ $\alpha_n = k_{n1}\beta_1 + k_{n2}\beta_2 + \cdots + k_{n, n-1}\beta_{n-1} + \beta_n$

□证明:

$$(\alpha_{1},\alpha_{2},\cdots,\alpha_{n}) = (\beta_{1},\beta_{2},\cdots,\beta_{n}) \begin{pmatrix} 1 & k_{21} & \cdots & k_{n1} \\ 0 & 1 & \ddots & \vdots \\ \vdots & \vdots & \ddots & k_{n\,n-1} \\ 0 & 0 & \cdots & 1 \end{pmatrix}$$

再将
$$\beta_1, \beta_2, \dots, \beta_n$$
单位化得 $\gamma_i = \frac{1}{\|\beta_i\|} (i = 1, 2, \dots, n)$

$$A = (\gamma_1, \gamma_2, \cdots, \gamma_n) \begin{pmatrix} \|\beta_1\| & & \\ & \|\beta_2\| & \\ & & \ddots & \\ & & \|\beta_n\| \end{pmatrix} \begin{pmatrix} 1 & k_{21} & \cdots & k_{n1} \\ & 1 & \ddots & \vdots \\ & & \ddots & k_{n,n-1} \\ & & 1 \end{pmatrix}$$

□证明:

令 $Q=(\gamma_1,\gamma_2,\cdots,\gamma_n)$, 则 Q是酉 (正交) 矩阵, 而令

$$R = \begin{pmatrix} \|\boldsymbol{\beta}_1\| & & & \\ & \|\boldsymbol{\beta}_2\| & & \\ & & \ddots & \\ & & \|\boldsymbol{\beta}_n\| \end{pmatrix} \begin{pmatrix} 1 & k_{21} & \cdots & k_{n1} \\ & 1 & \ddots & \vdots \\ & & \ddots & k_{n,n-1} \\ & & & 1 \end{pmatrix} = \begin{pmatrix} \|\boldsymbol{\beta}_1\| & \frac{(\boldsymbol{\alpha}_2, \boldsymbol{\beta}_1)}{\|\boldsymbol{\beta}_1\|} & \cdots & \frac{(\boldsymbol{\alpha}_2, \boldsymbol{\beta}_1)}{\|\boldsymbol{\beta}_1\|} \\ & & \|\boldsymbol{\beta}_2\| & \ddots & \vdots \\ & & \ddots & \frac{(\boldsymbol{\alpha}_n, \boldsymbol{\beta}_{n-1})}{\|\boldsymbol{\beta}_{n-1}\|} \\ & & & \|\boldsymbol{\beta}_n\| \end{pmatrix}$$

因为 $\|\beta_i\| > 0$ ($i=1,2,\dots,n$)是正实数,所以R是正线上三角矩阵,因此A有QR分解。

□例: 矩阵A的UR分解
$$A = \begin{pmatrix} 3 & 14 & 9 \\ 6 & 43 & 3 \\ 6 & 22 & 15 \end{pmatrix}$$

解
$$A$$
的列向量
$$\alpha_1 = \begin{pmatrix} 3 \\ 6 \\ 6 \end{pmatrix}, \alpha_2 = \begin{pmatrix} 14 \\ 43 \\ 22 \end{pmatrix}, \alpha_3 = \begin{pmatrix} 9 \\ 3 \\ 15 \end{pmatrix}$$
 将其正交化得

$$\beta_{1} = \begin{pmatrix} 3 \\ 6 \\ 6 \end{pmatrix} \qquad \beta_{2} = \alpha_{2} - \frac{16}{3} \beta_{1} = \begin{pmatrix} -2 \\ 11 \\ 10 \end{pmatrix}$$

$$\beta_{3} = \alpha_{3} + \frac{3}{5} \beta_{2} - \frac{5}{3} \beta_{1} = \frac{1}{5} \begin{pmatrix} 14 \\ -2 \\ -5 \end{pmatrix}$$

再单位化得
$$\gamma_1 = \frac{1}{3} \begin{pmatrix} 1 \\ 2 \\ 2 \end{pmatrix}, \gamma_2 = \frac{1}{15} \begin{pmatrix} -2 \\ 11 \\ -10 \end{pmatrix}, \gamma_3 = \begin{pmatrix} 14 \\ -2 \\ -5 \end{pmatrix}$$

故得正交矩阵
$$Q=(\gamma_1, \gamma_2, \gamma_3)$$
 $Q=\frac{1}{15}\begin{bmatrix} 5 & -2 & 14\\ 10 & 11 & -2\\ 10 & -10 & -5 \end{bmatrix}$

以及上三角矩阵

$$R = \begin{pmatrix} 9 & 0 & 0 \\ 0 & 15 & 0 \\ 0 & 0 & 3 \end{pmatrix} \begin{pmatrix} 1 & \frac{16}{3} & \frac{5}{3} \\ 0 & 1 & -\frac{3}{5} \\ 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} 9 & 48 & 15 \\ 0 & 15 & -9 \\ 0 & 0 & 3 \end{pmatrix}$$

$$A = \frac{1}{15} \begin{pmatrix} 5 & -2 & 14 \\ 10 & 11 & -2 \\ 10 & -10 & -5 \end{pmatrix} \begin{pmatrix} 9 & 48 & 15 \\ 0 & 15 & -9 \\ 0 & 0 & 3 \end{pmatrix}$$

□定理: 设矩阵 $A \in C^{m \times n}$ 是列满秩的矩阵,则矩阵A可以分解为 A = QR,其中 $Q \in C^{m \times n}$ 的列向量是标准正交的向量组, $R \in C^{n \times n}$ 是主对角线上元素为正数的上三角形矩阵。

证明 当A 为列满秩时, $f_m \ge k$. 将A 的列向量扩充为空间 C 的基,得到可逆矩阵 $(A \mid A_1) \in C^{**}$,由定理 3.7,有UR 分解

将酉矩阵
$$U \in \mathbb{C}^{n \times m}$$
分块为 $U = (Q \mid Q_1), Q \in \mathbb{C}^{n \times k}$.

将上三角矩阵
$$R$$
 分块为 $R = \left(\frac{R_1}{0} \middle| \frac{R_2}{R_3}\right)$,

其中 $R_1 \in C^{**}$ 是上三角矩阵,由于

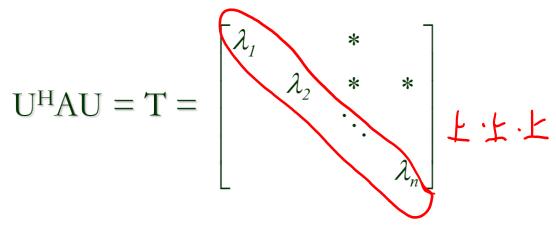
$$(A \mid A_1) = (Q \mid Q_1) \left[\frac{R_1}{0} \mid \frac{R_2}{R_3} \right] = (QR_1) \mid QR_2 + Q_1R_3)$$

$$A = QR_1.$$

 $A = QR_1$ 即为满足题意的QR 分解.

有

□定理: 对矩阵A∈Cn×n, 存在酉矩阵U和上三角矩阵T, 使得



其中lambda为矩阵A的特征值

□证明

证明 因为A∈C^{*},故A可相似于Jordan标准形,

$$A = PJP^{-1}.$$

又 $P \in \mathbb{C}^*$ "为可逆矩阵,则由定理 3.7,P 有UR 分解 P = UR,则

$$A = PJP^{-1} = URJR^{-1}U^{H}.$$

令 $T = RJR^{-1}$,则T 是一个上三角形矩阵,即有

$$U^{\mathsf{H}}AU = T$$
.

由相似矩阵特征值相等,上三角形矩阵T 的主对角线元素是A 的全部特征值: λ , λ ,…,

口定义 n 阶复矩阵A如果满足等式 $AA^H=A^HA$,则称A是正规矩阵或规范矩阵.

例:下列哪些矩阵是正规矩阵?

- 实对称矩阵 $A^T = A$;
- 反实对称矩阵 $A^{T}=-A$;
- 正交矩阵 $A^T = A^{-1}$;
- 酉矩阵 $A^{H}=A^{-1}$;
- Hermite矩阵 $A^H = A$;
- 反Hermite矩阵 $A^H = -A$;
- 对角矩阵

口定义 n 阶复矩阵A如果满足等式 $AA^H=A^HA$,则称A是正规矩阵或规范矩阵.

□证明: 设A 为正规矩阵, B 酉相似于A, 求证B 也是正规矩阵.

证明 设U 为酉矩阵,使 $B=U^HAU$,则

$$B^{\mathsf{H}}B = U^{\mathsf{H}}A^{\mathsf{H}}UU^{\mathsf{H}}AU = U^{\mathsf{H}}A^{\mathsf{H}}AU ,$$

又

$$BB^{\mathsf{H}} = U^{\mathsf{H}}AUU^{\mathsf{H}}A^{\mathsf{H}}U = U^{\mathsf{H}}AA^{\mathsf{H}}U$$
,

由A 为正规矩阵, $A^HA = AA^H$,得

$$B^{\mathsf{H}}B = BB^{\mathsf{H}}$$
.

由定义,B 为正规矩阵.

□定理: A∈Cn×n正规 ⇔ A酉相似于对角形

证明 必要性:若A 满足 $A^HA = AA^H$,则有Schur 分解,存在酉矩阵U,使 $A = UTU^H$,从例9推出上三角形矩阵T 满足: $T^HT = TT^H$,由

$$T = \begin{bmatrix} \lambda_1 & t_{12} & \cdots & t_{1n} \\ & \lambda_2 & \cdots & t_{2n} \\ & & \ddots & \vdots \\ & & & \lambda_n \end{bmatrix},$$

比较 TT^{H} 与 $T^{H}T$ 的第i行,第i列元素:

$$\begin{cases} (TT^{H})_{ii} = \sum_{j=i+1}^{n} |t_{ij}|^{2} + |\lambda_{i}|^{2}, \\ (T^{H}T)_{ii} = \sum_{j=1}^{i-1} |t_{ji}|^{2} + |\lambda_{i}|^{2}, \end{cases}$$

$$i = 1, 2, \dots, n.$$

由 $(T^{\mathsf{H}}T)_{ii}=(TT^{\mathsf{H}})_{ii}$ 得出: $t_{ij}=0$ ($i\neq j$),因此T为对角矩阵:

□定理: A∈Cn×n正规 ⇔ A酉相似于对角形

$$T = \begin{bmatrix} \lambda_1 & & & \\ & \ddots & & \\ & & \lambda_n \end{bmatrix}$$

充分性:因为对角矩阵是正规矩阵,又A 酉相似于正规矩阵,由例9,A 是正规矩阵.

□推论: $A \in Cn \times n$ 是正规矩阵的充分必要条件是 $A \neq n$ 个线性无关的特征向量构成空间Cn 的标准正交基.

 $A = U \wedge U^{H}$ $Au = u \wedge$ $\Rightarrow Au = \lambda u \wedge$

AH=X

□定理: Hermite矩阵的特征值是实数,而且属于不同特征值的特征向量是正交的.

证明 设A为Hermite矩阵,则由于A是正规矩阵,所以存在酉矩阵U,使

$$U^{H}AU = \begin{bmatrix} \lambda_{1} & & & \\ & \ddots & & \\ & & \lambda_{n} \end{bmatrix},$$

作为Hermite 矩阵,AH=A,即有

$$\begin{bmatrix} \overline{\lambda}_1 & & & \\ & \overline{\lambda}_2 & & \\ & & \ddots & \\ & & \overline{\lambda}_n \end{bmatrix} = \begin{bmatrix} \lambda_1 & & & \\ & \lambda_2 & & \\ & & \ddots & \\ & & & \lambda_n \end{bmatrix},$$

即 $\lambda = \lambda_i, i = 1, 2, \dots, n$, 因此 λ_i 为实数.

又设A的谱为 $\{\lambda_1, \lambda_2, \cdots, \lambda_n\}$,由A正规,

$$C' = V_{\lambda_1} \oplus V_{\lambda_2} \oplus \cdots \oplus V_{\lambda_s}$$

设 C 的标准正交基 $\{\alpha_1,\alpha_2,\cdots,\alpha_n\}$ 是 A 的 n 个特征向量,则 $V_{\lambda_1} = L\{\alpha_1,\alpha_2,\cdots,\alpha_n\}$, $V_{\lambda_2} = L\{\alpha_{r_1+1},\cdots,\alpha_{r_1+r_2}\},\cdots,V_{\lambda_n} = L\{\alpha_{r_1+r_2+\cdots+r_{p-1}+1},\cdots,\alpha_n\}$,因此当 $\lambda \neq \lambda_i$ 时, V_{λ_i} 与 V_{λ_j} 为彼此正交的子空间,这说明 A 关于不同特征值的特征向量是正交的.

□定理: 酉矩阵的特征值的模长为1,即分布在复平面的单位圆上.

证明 设A 为酉矩阵,则A 正规,即存在酉矩阵U,使

$$A = U \begin{bmatrix} \lambda_1 & & & \\ & \lambda_2 & & \\ & & \ddots & \\ & & & \lambda_n \end{bmatrix} U^{\mathsf{H}},$$

$$A^{\mathsf{H}}A = I_n \Leftrightarrow U \begin{bmatrix} \lambda_1 & & & & \\ & \lambda_2 & & & \\ & & & \lambda_n \end{bmatrix} U^{\mathsf{H}} = I_n,$$

则

即

$$\lambda_i = 1, i = 1, 2, \dots, n.$$

下面我们讨论正规矩阵的谱分解,给出一个矩阵是正规矩阵的另一个充分必要条件.

口定理: (正规矩阵谱分解) 设 $A \in \mathbb{C}^{n \times n}$, A的谱为 $\{\lambda_1, \lambda_2, ..., \lambda_s\}$, $(s \leq n)$, 则A是正规矩阵的充分必要条件是 A有如下的谱分解

其中
$$A = \sum_{i=1}^{s} \lambda_{i} P_{i} \quad ;$$

$$P_{i} P_{j} = \begin{cases} P_{i}, & i = j \\ 0, & i \neq j \end{cases}$$

$$\sum_{i=1}^{s} P_{i} = I$$

$$(3) P_{i}^{H} = P_{i}$$

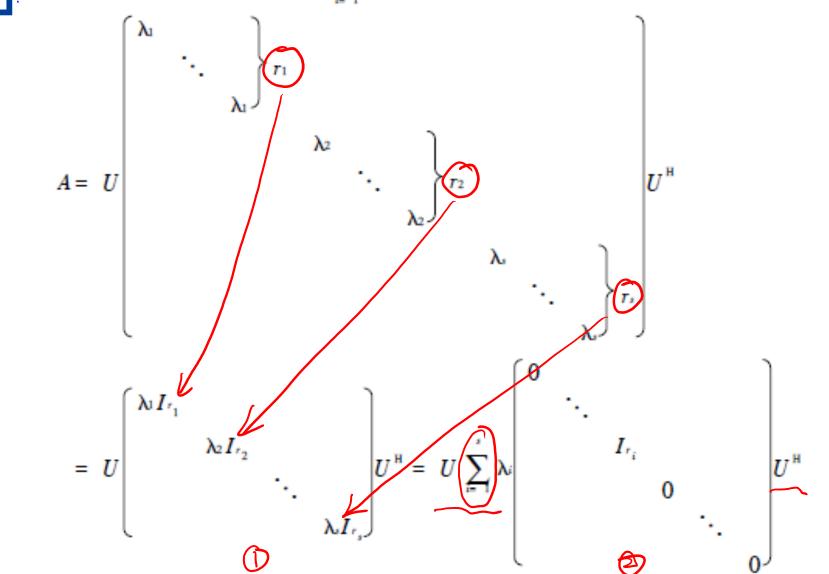
□证明:

充分性:由P:满足的性质

$$AA^{H} = \left(\sum_{i=1}^{s} \lambda_{i} P_{i}\right) \left(\sum_{j=1}^{s} \overline{\lambda_{j}} P_{j}^{H}\right) = \sum_{i=1}^{s} |\lambda_{i}|^{2} P_{i} = A^{H}A,$$

所以A 为正规矩阵.

必要性:设λ: 为A 的r: 重根, $\sum_{i=1}^{n} r_i = n$. 由A 为正规矩阵,存在酉矩阵U,使得



则P:满足(3.16)式~(3.18)式,而且

$$A = \sum_{i=1}^{s} \lambda_i P_i.$$

在正规矩阵的谱分解中,矩阵 P_i 不仅是幂等矩阵,而且是Hermite矩阵,在后面章节,我们将会看到 P_i 不仅是投影,而且是正交投影矩阵.

回例: 求正规矩阵 $A = \begin{pmatrix} 0 & 1 & 1 & -1 \\ 1 & 0 & -1 & 1 \\ 1 & -1 & 0 & 1 \\ -1 & 1 & 1 & 0 \end{pmatrix}$ 的谱分解

由矩阵A的特征多项式 $|\lambda E - A| = (\lambda - 1)^3 (\lambda + 3)$

得A的特征值
$$\lambda_{1,2,3} = 1, \lambda_4 = -3$$

对于 $\lambda_1 = 1$, 相应的线性无关的特征向量为

$$x_1 = (1,1,0,0)^T, x_2 = (1,0,1,0)^T, x_3 = (-1,0,0,1)^T$$

对于 $\lambda_2 = -3$, 相应的特征向量为 $x_4 = (-1,-1,-1,1)^T$

将x1,x2,x3标准正交化得:

$$\alpha_1 = \left(\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}, 0, 0\right)^T, \alpha_2 = \left(\frac{1}{\sqrt{6}}, \frac{1}{\sqrt{6}}, \frac{2}{\sqrt{6}}, 0\right)^T, \alpha_3 = -\left(\frac{1}{\sqrt{12}}, \frac{1}{\sqrt{12}}, \frac{1}{\sqrt{12}}, \frac{3}{\sqrt{12}}\right)^T$$

回例: 求正规矩阵
$$A = \begin{pmatrix} 0 & 1 & 1 & -1 \\ 1 & 0 & -1 & 1 \\ 1 & -1 & 0 & 1 \\ -1 & 1 & 1 & 0 \end{pmatrix}$$
 的谱分解

将x1,x2,x3标准正交化得:

$$\alpha_1 = \left(\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}, 0, 0\right)^T, \alpha_2 = \left(\frac{1}{\sqrt{6}}, \frac{1}{\sqrt{6}}, \frac{2}{\sqrt{6}}, 0\right)^T, \alpha_3 = -\left(\frac{1}{\sqrt{12}}, \frac{1}{\sqrt{12}}, \frac{1}{\sqrt{12}}, \frac{3}{\sqrt{12}}\right)^T$$

将
$$x_4$$
标准化 $\alpha_4 = \left(-\frac{1}{2}, -\frac{1}{2}, -\frac{1}{2}, \frac{1}{2}\right)^T$

记
$$U_1 = (\alpha_1, \alpha_2, \alpha_3) , U_2 = (\alpha_4)$$

$$P_1 = U_1 U_1^H , P_2 = U_2 U_2^H$$

则
$$A = \lambda_1 P_1 + \lambda_2 P_2 = P_1 - 3P_2$$

□正规矩阵谱分解的几何意义

》如果2阶实正规矩阵 A 有两个相同的特征值 λ ,则A = λ I 就是它的谱分解。如果 A 有两个不同的特征值 λ_1 与 λ_2 ,则其谱分解为 A= $\lambda_1 P_1 + \lambda_2 P_2$. 因此,对任意 $\alpha \in R^2$,有 $A\alpha = \lambda_1 P_1 \alpha + \lambda_2 P_2 \alpha$.

计算内积可得 (Pa,Pa) = (Pa)TPa = aTpTPa = 0,所以 $\lambda_1 P_1 \alpha = \lambda_2 P_2 \alpha$ 是正交的向量. 所以上述公式将 A 分解成了 两个正交向量的和。因此,二维正规矩阵的谱分解实际上是平面的正交投影变换的推广.

矩阵分解

- □矩阵分解:
 - ➤常见矩阵标准型及分解 三角分解 满秩分解 谱分解
 - ▶Schur分解与正规矩阵
 - ▶奇异值分解
 - ▶应用范例

- □概念回顾
 - ▶矩阵简化

对角化

Jordan阵化

LU (LDU) 分解

满秩分解

谱分解

Schur分解

奇异值分解

任意非正规矩阵怎么简化为对角矩阵?

定理: 设 $A \in C_r^{m \times n} (r > 0)$, 则存在 $S \in C_m^{m \times n}, T \in C_n^{n \times n}$, 使得

$$SAT = \begin{pmatrix} I_r & 0 \\ 0 & 0 \end{pmatrix}$$
 右式称为矩阵A的等价标准型

酉等价:设 $A, B \in C^{m \times n}$,若存在m阶酉矩阵U和n阶酉矩阵V、使得 $U^H AV = B$,则称A与B酉等价。

矩阵的奇异值分解就是矩阵在酉等价下的一种标准型。

□引理1设 $A \in C^{m \times n}$, $A^H A = AA^H$ 的特征值均为非负实数。

证明 设 λ 是 A^HA 的特征值,x是相应的特征向量,则 $A^HAx=\lambda x$

由于 $A^H A$ 为Hermite 矩阵,故 λ 是实数。

$$0 \le (Ax, Ax) = (Ax)^H (Ax) = \lambda x^H x$$

\(\therefore\) $x^H x > 0, \(\therefore\) $\lambda \ge 0$$

同理可证AAH的特征值也是非负实数。

旦引理2 设 $A \in C_r^{m \times n}$,则 $rank(A^H A) = rank(AA^H) = rank(A)$

证明 设x是方程组 $A^{H}Ax=0$ 的非0解, $Ax \in C^{m}$

则由 $(Ax, Ax) = x^{H}(A^{H}Ax) = 0$ 得 Ax = 0;

反之, Ax = 0的解也是 $A^{H}Ax = 0$ 的解;

因此,线性方程组Ax = 0与 $A^HAx = 0$ 同解。

$$rank(A) = rank(A^{H}A)$$

用 A^{H} 替换A, 得 $rank(A) = rank(A^{H}A) = rank(AA^{H})$

□性质

设
$$A \in C_r^{m \times n}$$
,

对于Hermite 矩阵 A^HA , AA^H , 设 A^HA , AA^H 有r个非0特征值,分别记为

$$\begin{array}{l} \lambda_1 \; \geq \; \lambda_2 \; \geq \; \cdots \; \geq \; \lambda_r \; > \; \lambda_{r+1} \; = \; \cdots \; = \; \lambda_m \; = \; 0 \\ \\ \mu_1 \; \geq \; \mu_2 \; \geq \; \cdots \; \geq \; \mu_r \; > \; \mu_{r+1} \; = \; \cdots \; = \; \mu_n \; = \; 0 \end{array}$$

则
$$\lambda_i = \mu_i$$
, $i = 1,2,\dots, r$

即: $A^H A = AA^H \pm 0$ 特征值相同,并且非零特征值的个数为 rank(A)

□定义: $A \in \mathbb{C}^{m \times n}$, 秩 (A) = r,设 $A^H A$ 的特征值 $\lambda_1 \ge \lambda_2 \ge ...$ $\ge \lambda_r > 0$, $\lambda_{r+1} = \lambda_{r+2} = ... = \lambda_n = 0$.,则矩阵的奇异值

$$\sigma_i = \sqrt{\lambda_i}$$
, $i = 1,2,..., r$.

注: A的正奇异值个数恰等于 rank(A), 并且 A与A^H有相同的奇异值。

□定理 酉等价的矩阵有相同的奇异值

证明 设A, $B \in C_r^{m \times n}$, A与B酉等价,则 存在酉矩阵 $U \in C^{m \times m}$, $V \in C^{n \times n}$, 使 A = UBV 由 $A^HA = (UBV)^H(UBV) = V^HB^HBV$,

所以A^HA与B^HB是酉相似的,有相同的特征值, 故A与B有相同的奇用值。

□定理 任何矩阵 $A \in C^{m \times n}$,秩 (A) = r,则存在酉矩阵 $U \in C^{m \times m}$, $V \in C^{n \times n}$,使得

$$\mathbf{A} = \mathbf{U} \begin{bmatrix} \boldsymbol{\sigma}_1 & & & & \\ & \boldsymbol{\sigma}_2 & & & \\ & & \ddots & & \\ & & & \boldsymbol{\sigma}_r & \\ & & 0 & & 0 \end{bmatrix} \mathbf{V}^{\mathbf{H}} \qquad \boldsymbol{\Delta} = \begin{bmatrix} \boldsymbol{\sigma}_1 & & & \\ & \boldsymbol{\sigma}_2 & & \\ & & \ddots & \\ & & & \boldsymbol{\sigma}_r \end{bmatrix}$$

注: $\begin{pmatrix} \Delta & 0 \\ 0 & 0 \end{pmatrix}$ 称为矩阵A的酉等价标准形.

□证明:设矩阵A^HA的特征值为

$$\lambda_1 \ge \lambda_2 \ge \cdots \ge \lambda_r > \lambda_{r+1} = \cdots = \lambda_n = 0$$

则存在n阶酉矩阵V,使得

$$V^{H}(A^{H}A)V = \begin{bmatrix} \lambda_{1} & & \\ & \ddots & \\ & & \lambda_{n} \end{bmatrix} = \begin{bmatrix} \Sigma^{2} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} \end{bmatrix}$$
 (2)

将V分块为

$$V = (V_1 \quad V_2)$$

其中 V_1, V_2 分别是V的前 r 列与后 n-r 列.

并改写②式为

$$A^{\mathrm{H}}AV = V \begin{bmatrix} \Sigma^2 & \mathbf{0} \\ \mathbf{0} & \mathbf{0} \end{bmatrix}$$

则有

$$A^{\mathrm{H}}AV_{1} = V_{1}\Sigma^{2}, \quad A^{\mathrm{T}}AV_{2} = \mathbf{0}$$

由③的第一式可得

$$V_1^{\mathrm{H}} A^{\mathrm{H}} A V_1 = \Sigma^2$$
, 或者 $(A V_1 \Sigma^{-1})^{\mathrm{H}} (A V_1 \Sigma^{-1}) = I_r$

由③的第二式可得

$$(AV_2)^{\mathrm{H}}(AV_2) = \mathbf{0}$$
 或者 $AV_2 = \mathbf{0}$

令 $U_1 = AV_1 \Sigma^{-1}$,则 $U_1^H U_1 = I_r$,即 U_1 的r个列是两两正交的单位向量.记

$$\boldsymbol{U}_{1} = (\boldsymbol{u}_{1}, \boldsymbol{u}_{2}, \cdots, \boldsymbol{u}_{r})$$

因此可将 u_1, u_2, \cdots, u_r 扩充成标准正交基,记

增添的向量为 $\mathbf{u}_{r+1},\cdots,\mathbf{u}_{m}$,并构造矩阵

$$\boldsymbol{U}_2 = (\boldsymbol{u}_{r+1}, \cdots, \boldsymbol{u}_m)$$

$$U=(U_1,U_2)=(u_1,u_2,\cdots,u_r,u_r,u_{r+1},\cdots,u_m)$$

是加阶正交矩阵,且有

于是可得
$$U_1^H U_1 = I_r$$
, $U_2^H U_1 = 0$

$$\boldsymbol{U}^{\mathrm{H}}\boldsymbol{A}\boldsymbol{V} = \boldsymbol{U}^{\mathrm{H}}(\boldsymbol{A}\boldsymbol{V}_{1}, \boldsymbol{A}\boldsymbol{V}_{2}) = \begin{bmatrix} \boldsymbol{U}_{1}^{\mathrm{H}} \\ \boldsymbol{U}_{2}^{\mathrm{H}} \end{bmatrix} (\boldsymbol{U}_{1}\boldsymbol{\Sigma}, \boldsymbol{O}) = \begin{bmatrix} \boldsymbol{\Sigma} & \boldsymbol{O} \\ \boldsymbol{O} & \boldsymbol{O} \end{bmatrix}$$

矩阵U, V的空间性质

- □V=[v_1 , v_2 , ..., v_r , ..., v_n] =[V_1 V_2] ∈ $C^{n\times n}$ 的列向量是空间 C^n 的标准正交基。
 - ▶V₂的列向量是空间N (A) 的标准正交基。
 - $ightarrow V_1$ 的列向量是空间 N ightharpoonup (A) 的标准正交基。

- □U=[u_1 , u_2 , ..., u_r , ..., u_m] =[U_1 U_2] ∈ $C^{m \times m}$ 的列向量是空间 C^m 的标准正交基。
 - ▶U₁的列向量是R (A)的标准正交基。
 - $ightarrow U_2$ 的列向量是 R^{\perp} (A) 的标准正交基。

矩阵U, V的空间性质

口推论:在矩阵A的奇异值分解 $A=UDV^H$ 中,U的列向量为 AA^H 的特征向量,V的列向量为 A^HA 的特征向量.

$$:: AA^{H} = (UDV^{H})(UDV^{H})^{H}$$

$$= UDV^{H}VDU^{H} = UD^{2}U^{H}$$

$$\therefore (AA^{H})U = UD^{2} = Udiag(\lambda_{1}, \lambda_{2}, \dots, \lambda_{r}, 0, \dots, 0)$$

记
$$U = (u_1, u_2, \dots, u_n)$$

则
$$(AA^{H})u_{i} = \lambda_{i}u_{i}$$
, $i = 1,2,\dots, n$

说明:此定理仅是奇异值分解的必要条件,但不是 充分条件。

- □利用矩阵AHA求解
 - ▶求矩阵AAH的酉相似对角矩阵及酉相似矩阵U;

$$U^{H}(AA^{H})U = \begin{pmatrix} \Delta^{2} & 0 \\ 0 & 0 \end{pmatrix}$$

- \rightarrow 扩充 V_1 为酉矩阵 $V=(V_1,V_2)$
- ightharpoonup构造奇异值分解 $A = U \begin{pmatrix} \Delta & 0 \\ 0 & 0 \end{pmatrix} V^H$

□例 求矩阵A的奇异值分解

$$A = \begin{pmatrix} 1 & 2 \\ 0 & 0 \\ 0 & 0 \end{pmatrix}$$

利用矩阵AAH求解

$$\mathbf{A}\mathbf{A}^{\mathrm{H}} = \begin{pmatrix} 5 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}, \quad \boldsymbol{\sigma}_{1} = \sqrt{5}, \boldsymbol{\Delta} = (\sqrt{5}),$$

$$AA^{H}$$
的特征值 $\lambda_{1} = 5, \lambda_{2} = \lambda_{3} = 0$

□例 求矩阵A的奇异值分解

对应的特征向量分别为

$$\mathbf{x}_1 = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}, \mathbf{x}_2 = \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}, \mathbf{x}_3 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix};$$

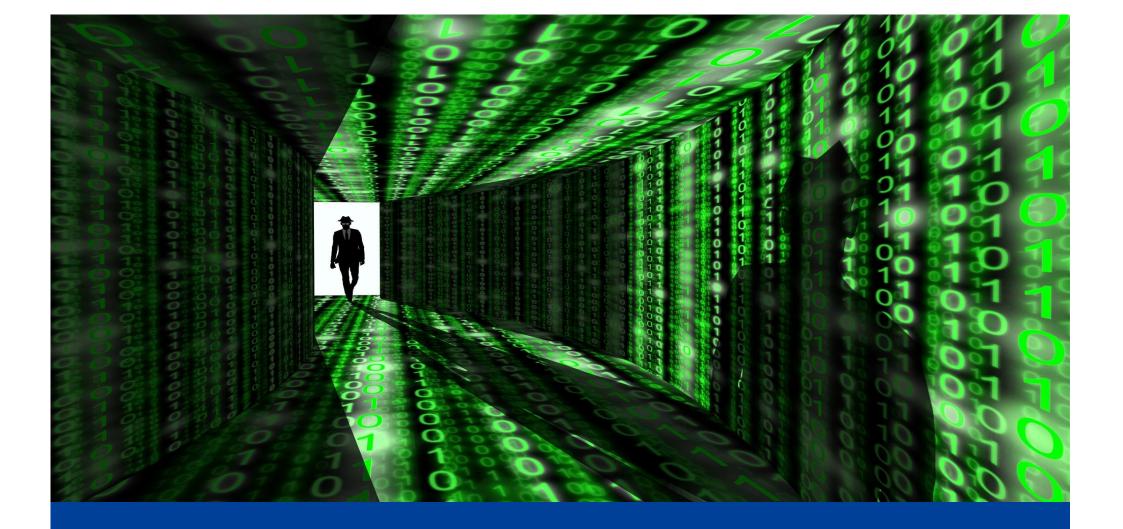
$$\mathbf{P}$$
 $\mathbf{U} = (\mathbf{x}_1, \mathbf{x}_2, \mathbf{x}_3), \mathbf{U}_1 = \mathbf{x}_1, \mathbf{U}_2 = (\mathbf{x}_2, \mathbf{x}_3)$

□例 求矩阵A的奇异值分解

取
$$V_2 = \begin{pmatrix} \frac{-2}{\sqrt{5}} \\ \frac{1}{\sqrt{5}} \end{pmatrix}$$
,则 $V = (V_1, V_2) = \begin{pmatrix} \frac{1}{\sqrt{5}} & \frac{-2}{\sqrt{5}} \\ \frac{2}{\sqrt{5}} & \frac{1}{\sqrt{5}} \end{pmatrix}$

因此
$$A = U \Sigma V^H$$

$$= \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} \sqrt{5} & 0 \\ 0 & 0 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} \frac{1}{\sqrt{5}} & \frac{-2}{\sqrt{5}} \\ \frac{2}{\sqrt{5}} & \frac{1}{\sqrt{5}} \end{pmatrix}$$



Thanks